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Foreword

Psychologists have a phrase for the human ability to believe two completely
contradictory things at the same time; it is called “cognitive dissonance.” We
do seem to be quite capable of believing that war is evil (though we should
destroy our enemies), taxes are too high (though government spending should
increase), and that politicians can keep a promise (perhaps enough said on
that point). Psychologists in fact tell us that this ability to simultaneously
face and ignore realities makes it possible to live in a complicated, constantly
changing world. Engineers, however, are supposed to do better than live in
hope. Engineers model systems, test their models against requirements, exe-
cute their designs, and then test their models against the post-development
reality (e.g., system design versus as-built) to ensure the quality and sustain-
ability of their product and in fact their production methods. Why, then, do
we in the computer engineering field find ourselves with an enormous software
quality problem, all over the world?

I’ve just finished reading an article in a leading software development mag-
azine about the state of the software testing industry, which leads off with the
unlikely sentence, “The ethos of quality is sweeping into the IT space. . . ”1.
I had to read the line several times before I realized that it did not read,
“the ethos of quality has swept completely out to space,” which I think is
the more likely position! Software quality–measured either qualitatively or
quantitatively–is atrocious, in nearly all settings, whether commercial, aca-
demic, or open-source. The level of concern for customer needs, even cus-
tomer safety, is surprisingly small. Major software vendors beta-test (and
even alpha-test) their software by placing it in the hands of millions of cus-
tomers, many of whom are paying for the software they are testing. “Don’t
buy version 1.0,” is the common credo of most Chief Information Officers that
I know.

1 “The Trouble with Software QC: Steps toward making better software better,” by
Colin Armitage, in Dr Dobb’s Journal, March 2007.
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Where might the solution to this problem lie? Certainly, there are sev-
eral different foci needed to solve the problem, and the most important is a
changing point of view (and therefore incentivization and management style)
on the part of customers and development labs, a point of view that software
quality is important and in fact might be worth paying for. These market
issues, coupled with developer commitment to software quality expressed in
process and methodology, will make a difference.

But technology plays a part also. In particular, the move to Model-Driven
Architecture (MDA) as a basis for engineering software-based systems shows
some promise to help support corporate commitments to quality. Although
MDA originally focused primarily on software delivery, maintenance, and in-
tegration, with the intent of lowering the costs involved in those phases of
the software lifecycle (especially maintenance and integration), the MDA ap-
proach has something to say about software testing as well.

Think back, for a moment, to what engineers did (and still do) when en-
gineering meant purely nuts, bolts, steel, wood, and concrete. An architect or
structural engineer would specify materials for, for example, bridge construc-
tion, including such things as steel tensile strength and admixture minima
in the concrete mix. While these specifications—abstractions, or models—
are used in various artifacts of the construction process (e.g., requests for
quotation, requests for proposals, bills of materials, bills of lading), they are
also used by responsible engineers in the test phase of construction. When
the concrete appears on the job site, samples are tested to ensure that
the admixture delivered meets the requirements specified in the construc-
tion plans. If it does not, a potential disaster awaits, as the entire structure
may very well depend on the concrete block about to be poured. This lesson
was learned in unfortunate detail throughout the 19th century, as the fail-
ings of cast iron as a bridge-building material (due to fracture) was slowly
understood.

The key idea here, however, is not about bridge-building but about tests
based on designs. Clearly, we should be doing the same thing in the software
field if we are to be considered “engineers” in the same class as civil engineers
and chemical engineers!

This concept of model-driven testing, of extending the concepts of tests
based on designs (borrowed from older engineering fields) to software de-
signs, has been a major focus area recently at OMG and is carefully expanded
upon in the book you are holding. Once one has a system design—for a road
bridge or for a bridge-playing program!—one should be able to specify in
those requirements how to test the as-built artifact (the running code) to en-
sure that it meets the requirements of the intended (and often unintended)
users.

Software modeling is not a trivial subject, and extending modeling to the
automatic generation not only of code but of software unit and integration
tests is not any simpler. This book, however, does an admirable job of integrat-
ing the concepts of modeling and testing and leverages the latest standards
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and technologies to help you make your software testing regime and process
better, faster, and cheaper. It is worth the read.

The problem with politicians, however, remains for a better day!

Richard Mark Soley, PhD
Chairman and CEO

Object Management Group, Inc.
April 25, 2007



Preface

As software systems become more important in almost every facet of human
life, the demand for software quality increases. As a result, several new
technologies have emerged to help with the development of high-quality, sys-
tems. These include UML for system specification, JUnit, and TTCN-3 for
test case design and execution, as well as new development paradigms such
as Model-Driven Architecture (MDA).

Prior to the development of the UML Testing Profile (UTP), there was
not a test specification language that aligned UML and other technologies
such as those mentioned above. The consortium of institutions involved in
the development of the UTP (Ericsson, Fraunhofer/FOKUS, IBM/Rational,
Motorola, Telelogic, University of Lübeck) sought to address this absence by
providing a UML profile for test specification. This book represents the first
comprehensive introduction to the standard.

We would like to thank Telelogic AB for providing us with the Telelogic
TAU tool for use in creating the diagrams in this book. We also want to thank
Eric Samuelsson, our colleague at Telelogic, who was invaluable in developing
the profile. He was unable to participate in the writing of this book, but
his wise guidance during the development of the profile informs much of the
material in this work. Finally, we want to thank our editor at Springer, Ralf
Gerstner, for giving us a chance to publish the work and for providing us with
careful guidance during the process.

Paul Baker Winchester, UK,
Zhen Ru Dai Berlin, Germany,
Jens Grabowski Göttingen, Germany,
Øystein Haugen Oslo, Norway,
Ina Schieferdecker Berlin, Germany,
Clay Williams New York, NY,
April 2007
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Introduction

As software systems become increasingly complex, new paradigms are needed
for their construction. One of these new paradigms is model-driven develop-
ment, which already has a demonstrable impact in reducing time to market
and improving product quality. This particular paradigm is concerned with the
introduction of rigorous models throughout the development process, enabling
abstraction and automation. To this end a standardized, graphical language
called the Unified Modeling Language (UML)TM was developed by the IT and
software industry for the construction of software systems. UML enables sys-
tem requirement and design specifications to be created and visualized in a
graphical manner, which supports improved communication and validation. It
also enables the introduction of automated software production techniques. As
a consequence, UML has become widely adopted as a development technology
throughout the software industry.

However, the development of high-quality systems requires not only sys-
tematic development processes but also systematic test processes. This book
is specifically about systematic, model-based test processes in the context of
UML. As UML provides only limited means for the design and development
of corresponding tests, a consortium was built by the Object Management
Group (OMG) in order to develop a Unified Modeling Language, version
2 (UML 2) profile to enable model-based testing with UML [24, 36]. We refer
to this profile as the UML Testing Profile (UTP).

With the resulting UTP, the way models and their realizations can be
tested and evaluated has been unified. Dedicated test concepts help to design
and structure tests, to define test procedures and related test data precisely.
The profile also allows users to derive and reason about the quality of tests and
about the test coverage of a given test suite. The UTP closes a gap in the set of
technologies around UML: It combines and integrates system and test devel-
opment via UML and provides a common way for the different stakeholders
to communicate and reason about the systems and their tests with which they
are involved as developers, purchasers, customers, and users. The profile also
allows system architects, designers, and developers to efficiently cooperate
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with the testers throughout the system development process on the basis of a
common model base.

Six organizations consisting of tool vendors, industrial users, and research
institutes (Ericsson, Fraunhofer FOKUS, IBM/Rational, Motorola, Telelogic
and University of Goettingen to Lubeck) decided to collaborate and pro-
duce the UTP specification jointly. While some of the consortium members
come from the world of testing, others are experienced in system modeling
with Message Sequence Chart (MSC), Specification and Description Lan-
guage (SDL), and UML, respectively. These members agreed that by working
in a larger team, the resultant profile would have a broader scope on test-
ing, where the best ideas should be incorporated into the profile specification.
After 2 years’ work, the UTP specification has been adopted by the OMG
[35]. Since summer 2005, the profile has become an official standard at the
OMG [26].

In this book, we present how UML is used for the purposes of testing com-
plex software systems. We introduce a systematic but simple methodology
for addressing different types of testing within UML-based development. The
book helps avoiding typical difficulties in designing, structuring, and develop-
ing tests systematically: UTP is introduced stepwise–driven by a case study
that highlights the principles and concepts of the underlying methodology.
The important issues of test completeness, correctness, and consistency are
discussed. The book teaches the reader how to use the UTP for test modeling
and test specification. It presents best practices for using UML for different
aspects of testing and demonstrates the automated execution of UML-based
tests with existing test frameworks such as the JUnit test framework for Java
and Testing and Test Control Notation (TTCN-3).

To aid the reader, we introduce three types of highlighted text within the
book:

1. UTP Concepts. These are presented to the reader as we introduce con-
cepts from the UTP standard.

2. UTP Methodology. These denote key process aspects the reader should
consider when using UTP.

3. UTP Tips. These are include to highlight pertinant or key points that
are very useful or important when using or considering UTP.

Everyone involved in software quality assurance could benefit from the
techniques introduced in this book. The book helps testers understand the
concepts of UTP and applying it within a UML-based system development
process. The book is

• for testers and developers who are looking to use model-based and auto-
mated testing or that are in organizations using UML for software system
development;

• for project managers, system architects, and designers who want to address
system quality and testability aspects throughout system development;
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• for students and academics wishing to learn about testing with UML; and
• for tool developers wishing to get an overview of how tools can support

UML-based testing.

Although UML is briefly introduced at the beginning of the book, it is
advantageous for readers to be familiar with UML—for example, as described
in [29].

We recommend reading this book sequentially from start to end. UML
experts and those being less interested in the specific details of the case study
may decide to start with Part II on functional testing. If you are interested in
advanced testing concepts, for example, how to design test data efficiently or
how to do performance, load, and scalability testing, you might start reading
with Part III. General aspects of applying UTP are discussed in Part IV.
Tools are covered in Part V and Section 11.1, respectively. Part VI provides
an overview of a UTP reference guide, a list of acronyms, an index, and
references.



Part I

Foundations



1

Model-Based Testing

Wikipedia [41], the free encyclopedia on the World Wide Web (www), refers
to model-based testing as “software testing where test cases are derived in
whole or in part from a model that describes some (if not all) aspects of the
system under test (SUT)” [39]. The SUT may be something as simple as a
method or class, or as complex as a complete system or a solution consisting
of multiple systems. For testing, a model provides a behavioral description of
the SUT.1 This description can be processed to yield a set of test cases that
can be used to determine whether the SUT conforms to a desirable property
that is represented in the model. In this chapter, we identify the phases in
the software development process where models are designed and describe the
principles of test development based on models.

1.1 The Software Development Process

Literature distinguishes between different software development processes. Ex-
amples of such processes are the software life cycle, the waterfall model, the
spiral model, the unified process, the V-model, and the W-model [33, 34, 40].
In all these different processes, software is developed in phases. Most of the
processes have similar phases and mainly differ in the conditions and pos-
sibilities for progressing into the next phase or revisiting a previous phase.
A specialty of the V- and W-models is an integrated view of construction
and corresponding testing phases. In this book, we use V- and W-models to
explain model-based testing and the role of UML Testing Profile (UTP) in
the software development process.

1 A model is an abstraction of a complex problem or system which should be solved
or implemented in software or hardware. Behavioral descriptions are only one
aspect of a model; further aspects may be related to structural and non-functional
requirements.
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Fig. 1.1. The V-model

The principle structure of the V-model is shown in Figure 1.1. The V-model
distinguishes between construction phases (shown on the left-hand side in
Figure 1.1) and testing phases (right-hand side in Figure 1.1).

System development starts with the Requirements Definition phase. Re-
quirements are captured from the customer and future users. They are used in
the following Functional System Design phase to develop a functional model
of the system. The functional model should be independent from the future
implementation of the system to avoid early design decisions. It may include
artifacts from the environment of the system and even business processes of
the customer. The software architecture is modeled in the Technical System
Design phase. This phase structures the software system into components and
defines the interfaces among the constituents. The detailed behavior of the
components is defined in the Component Specification phase. The construc-
tion phases of the V-model end with the Implementation of the components.

The implementation of the components is the basis for the following test-
ing phases. In the Unit Level Testing phase, component implementations are
tested against their specifications. In the next step, Integration Level Testing is
used to test the smooth interworking of the finalized components. The integra-
tion testing phase ends when all components are integrated and the complete
system is ready for System Level Testing. System level testing is the first
test where the complete system is available and the complete functionality
is tested. The basis for system level testing is the functional system design
but may also include tests from the perspective of the developers and system
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integrators. Acceptance Level Testing is very similar to system level testing
but is purely based on the perspective of the customer and the future users.

Even though the V-model suggests a procedure where the testing phases
are performed after the construction phases, it is well known that the prepara-
tion of each testing phase should start as early as possible, that is, in parallel
to the corresponding construction phase. This allows for early feedback re-
garding the testing phase. The W-model [33], illustrated in Figure 1.2, is a
refinement of the V-model.

On the left-hand side of the W-model, the construction phases are struc-
tured into two tasks: (1) a construction task and (2) a corresponding test
preparation task. The arrows between construction and test preparation tasks
indicate iterations during the work on these tasks.

The right-hand side of the W-model covers test execution and debugging.
The arrows between test execution, debugging, and implementation describe
the iterative correction of errors. If a test detects a failure, debugging is needed
to locate the fault and after correcting the fault, that is, changing the imple-
mentation, the test has to be executed again.

Fig. 1.2. The W-model

1.2 UML and UTP in System Development

The results of the work on the different phases in the software development
process are artifacts describing a software system at different levels of abstrac-
tion and from different perspectives. The artifacts are models of the system.
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The models may be defined by using different languages and notations. For
example, the requirements may be defined by using plain English text, a pro-
gramming language such as C++ may be used for the implementation, and a
script language may implement executable test cases.

This book is about models and modeling languages. We follow the ap-
proach that only one modeling language is used, the UML. The exhaustive
usage of UML allows the usage of commercial UML tools and eases communi-
cation between the customer and the people working in a project team. Com-
mercial UML tools provide several potential advantages. They may support
domain-specific UML profiles, they allow consistency checks between UML
models produced in different construction phases, and they often have facili-
ties to generate test cases and implementations. We are aware of the fact that
not all artifacts should be written in the form of UML diagrams (e.g., user
guidelines) and that not all requirements can be expressed adequately with
UML (e.g., robustness or usability criteria). However, UML tools are evolving,
and experience has shown that the use of UML improves the quality of the
software products and the software development process.

While we cover the basics of UML, this book is about UTP. UTP is a
specialization of UML for testing. It provides testing concepts in UML and
therefore eases the communication between developers and testers. Our UML-
centric view of the W-model is shown in Figure 1.3. Pure UML should be used
in the constructions tasks, and UTP should be applied in the test preparation
tasks of the W-model. In this book, we explain the concepts of UTP and
explain how UTP models can be derived systematically from UML models.

Fig. 1.3. Using UML and UTP in system development
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Figure 1.3 also refers to the Testing and Test Control Notation (TTCN-3)
and JUnit, because UTP provides mapping rules to both testing technolo-
gies. JUnit, a testing framework for Java implementations, is mainly used for
tests close to the implementations, that is, for unit level testing and integra-
tion level testing. The domain of TTCN-3 is functional black-box testing of
communication systems. Therefore, TTCN-3 is often applied in later testing
phases, that is, for integration testing of subsystems, system level testing, and
acceptance level testing. The mapping of UTP to JUnit and TTCN-3 will be
explained in Chapters 12 and 13 of this book.

1.3 Model-Based Test Development

Model-based testing requires the systematic and possibly automatic derivation
of tests from models. In our case, UML is the language for specifying models
and UTP the formalism to describe the derived tests.

From a testing perspective, UML models can be seen as software programs.
Therefore, the test derivation approaches known from general software testing
can also be applied to UML models. The two basic techniques in software
testing are black-box testing and white-box testing. The principles of black-
box and white-box testing are well described in, for example, the books of
Beizer [1] and Myers [20].

In addition to these techniques, several methods for the automatically
generating test cases from formal description techniques exist. These methods
may be applicable to UML models if the models are executable and if a formal
semantics for the used subset of UML exists. The automatic generation of tests
from UML models cannot be covered in this book, because it is still an actual
research topic [7].

1.3.1 Black-Box Testing Approaches

Black-box testing, often also called functional testing, treats the SUT as a
black box. Tests are developed without any assumption about the internal
structure of the SUT. They evaluate the pure input–output behavior of the
SUT. Typically, a set of test cases is defined for each function of the SUT,
focusing on the different outputs which the function should produce.

Well-known approaches for the systematic development of black-box tests
are equivalence class partitioning and boundary value analysis. For equiva-
lence class partitioning, the domain of each input parameter of a function is
structured into equivalence classes. For the values in an equivalence class, it
is assumed that the function treats them in the same manner, and therefore,
only one representative of each equivalence class needs to be tested. Boundary
value analysis is often used in combination with equivalence class partition-
ing. In this approach, test cases developed by equivalence class partitioning
are supplemented by test cases that test the boundaries of the equivalence
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classes because typical programming errors, for example, wrong termination
conditions for loops, are often related to these boundaries.

In UML, functions are specified on different levels of abstraction. Use cases
describe the main functionality of the entire system, that is, on system level,
and methods of classes specify functions on subsystem and unit level. The
different levels of abstraction correspond to the different construction and
testing phases described in the V-model — see Figure 1.1. In other words, use
cases and methods identify the sets of test cases which have to be developed
for achieving a functional coverage of the system. Help for the identification
of equivalence classes may be given by the detailed specification of use cases
and methods by, for example, sequence diagrams or activity diagrams. The
specified flows of control are often related to equivalence classes.

1.3.2 White-Box Testing Approaches

White-box testing (also called glass-box testing) makes use of the internal
structure of the SUT, that is, treats the SUT as glass box. Test cases are
developed by using coverage criteria for the program code. Typical coverage
criteria are statement coverage, branch coverage, and path coverage. Further
coverage criteria are related to the usage of variables in the program flow and
conditions that determine branching and loop termination.

Coverage criteria may also be used for deriving test cases from UML mod-
els. For example, state and transition coverage criteria can be used to define
a satisfactory set of test cases for a state machine describing the behavior of
a class. Coverage criteria may also be used to define test cases for sequence
diagrams, activity diagrams, and interaction overview diagrams.

1.3.3 Automatic Test Generation

Automatic test generation requires a specification language which has a formal
semantics, such as a semantics based on Finite State Machines (FSM). The
principles of an FSM-based automatic test generation are the following: The
semantics of an FSM-based language describes how a specification written
in that language can be translated automatically into a corresponding FSM
that describes the behavior of the specified system. Automatic test generation
assumes that an implementation, which implements such a specification, has
the same properties as the FSM, for example, states and state transitions. The
algorithms for automatic test generation take advantage of this assumption
by simulating the FSM and searching for sequences which are characteristic
for states and state transitions of the FSM. A short summary of FSM-based
test generation can be found in, for example, the book of Holzmann [12].

FSMs are only one possibility to describe the formal semantics of a spec-
ification language. Other languages use labeled transition systems, abstract
state machines, or Petri nets. However, the automatic test generation process
is very similar for all formalisms. This means a specification is translated into
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the formal model and the test generation algorithm search for traces which
demonstrate certain properties of the model. These traces form the basis for
the test behavior.

The definition of a formal and executable semantics for UML is still un-
der investigation. Therefore, there is no universal approach for automatic test
generation from UML models. However, specific approaches based on varying
semantic models do exist. These are based on approaches such as using char-
acterizing sequences for states and state transitions to guide test development
for model elements such as UML state and activity diagrams.



2

Basics

To read this book, it does help to have some background in both testing and
modeling with UML, but we do not require the reader to be fluent in any of
these disciplines. Here we provide a brief introduction to the UML modeling
language. We also provide the reader with an overview of the UML Testing
Profile (UTP), its motivation, and history. Readers with prior knowledge may
either read this chapter quickly or skip it altogether.

2.1 UML Overview

This section gives a basic introduction to UML. This is not a complete UML
textbook but a brief introduction to the parts of the language applied in
this book. For a more detailed description of UML 2, we refer to textbooks
that are made specific for that purpose. For a fairly precise description of the
language, we recommend [29]. For a quick but fairly accurate glance of what
UML 2 is, we suggest [42], and for a full definition of the language, refer to
the standard [36].

2.1.1 Introduction to Class Models

If you only know a little UML, you will probably know about class models.
Class models are used to define concepts and their associations, and thereby
describe the conceptual foundation for a system. Often class models are the
diagrams used in the very early phases of development. They are applied in
the early stages and form the basis on which the total model is built. Here
are the major constructs related to class diagrams.

In Figure 2.1, a number of class symbols are illustrated, named Y, A, D, E,
B, Super, and C. We also show signals m1, m2, m3, m4, and m5. Signals are
special classes to describe the objects transmitted in asynchronous messaging.
Notice that signals look like plain classes, but they are marked with a text
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Class diagram1 package UMLIntro {1/3}

Y
b:B
c:C

S2 ()
S1 ()
S3 ()

A
w:Integer

D

c2( prm : Integer): Integer

E B
u:Integer
v:Integer

C

c1(arg:String):Integer

Super

a1 d1

d
0..1

aname
ed
11

<<signal>>

m1
<<signal>>

m2
<<signal>>

m3
<<signal>>

m4
<<signal>>

m5

Fig. 2.1. Class diagram—with some signals

«signal» before the name. Such explanatory marks in guillemets are called
stereotypes and give additional information for the language analyzer. A
class symbol contains a number of horizontal compartments, each of which
contains a specific kind of information. Observe class Y and notice the entities
b:B and c:C. These represent properties that may be interpreted as attributes
or internal variables to all Y objects. b has the type B and c has the type C.

Observe class D and notice the entity c2() indicating an operation named
c2. An operation is a specification of a piece of behavior. It is the signature
of a unit of behavior and associated with the definition of that behavior. We
shall return to the description of behavior later. We find an operation also in
class C where the operation c1 has a string parameter and returns an Integer
result.

However, the lines between the class symbols are as important as the
class symbols themselves. Observe the line between classes D and E. This
is an association decorated with the name aname, role names are labeled
d and e, and multiplicities are defined as 1. The association name is just
there to make it simple to talk about that association. The role names are
attached to the association ends. Intuitively, the role name e indicates how D
refers to E along the association aname. The multiplicities on the association
indicate how many objects of one class at a given end of the association may
be connected to one object at the other end. In this case, a 1-1 multiplicity
association indicates that for each D there is an aname link to one E and
vice versa.
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Observe the directed line between classes A and D. The direction of the line
shows what is called navigability, indicating that in the actual object model
there must be a straightforward way to come from an A object to a D object.
In simple systems, this is implemented as a pointer. The 0..1 multiplicity says
that for each A object there may be either 0 or 1 D objects.

Observe the line between classes Y and E. That line has a black diamond
at Y and an arrow at E. The arrow again indicates navigability, while the
black diamond defines composition . A composition means that there are
E objects comprised in Y objects and that the lifespan of these E objects
cannot extend beyond the lifespan of the Y object containing them. Instead of
a black diamond we can use a white diamond to define aggregation meaning
containment where the contained objects may have a lifespan that extends
beyond that of the container.

Finally, observe the relationships between classes E, B, and Super. This
part of the figure shows two independent constructs.

1. It illustrates that the lines may merge. In the diagram, the lines from
E and B merge before they reach the open arrowhead on Super. This
is graphical shorthand for reducing graphical complexity of the diagram.
Semantically, this is equivalent to two lines both ending with an open
arrowhead at Super.

2. The open arrowhead defines generalization, meaning that classes E and
B are specializations of Super. They inherit all properties of the general
class Super. This construct is used to define inheritance hierarchies.

One class diagram does not necessarily tell the whole story about the
classes shown in it. Rather, the definition of a class is the union of all diagrams
involving that class.

In Figure 2.2, we see that class Y has been repeated. It is now involved
with class X through an anonymous association and class World through a
composition. Both of these relationships add to the definition of class Y. Thus,
all new information in any diagram adds to the definition of a concept, and in
fact additional information may be added directly into the UML repository
model without going through any diagram. A UML tool normally provides a
model explorer where the different constructs are presented and where addi-
tional language objects may be added and modified.

In Figure 2.3, an internal structure, also known as a composite structure,
for the World class is defined. This structure contains two parts x and y of
types X and Y. The two parts are also properties of World and appear also
as the role names of the two composition associations from World. Between
the parts x and y, there are two connectors that indicate communication
between x and y in both directions. The composite structure with x and y
could also have been presented within a special compartment of class World.
The composite structure of class Y is shown in Figure 2.4.
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Class diagram2 package UMLIntro {2/3}

World

X
x
1 Y

part a : A[1]
b : B
part d : D[1]
c : C
part e : E

S1 ()
S2 ()
S3 ()

y

yx
11

Fig. 2.2. Class diagram—the World

World composite structure class World {1/1}

x : X[1] y : ::UMLIntro::Y

Fig. 2.3. W’s composite structure diagram

2.1.2 Introduction to Use Cases

One of the original contributions to UML was use cases. Use cases are mostly
applied in the initial analysis phases to define what services (or “use cases”)
the system will provide.

We have given a simple example in Figure 2.5 that says that an actor
of type X is involved in a use case describing some functionality S4 of the
subject y:Y. In Section 2.1.3, we define this functionality using other UML
notations.
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Y composite structure class Y {1/1}

c : C

a : A[1]

b : B

d : D[1]

e : E

Fig. 2.4. Y’s composite structure diagram

Usecases of Y package UMLIntro {3/3}

y:Y

X
S4

Fig. 2.5. Use cases of Y

Continuing with the use case diagram, the modeler will give the descrip-
tion of the functionality in structured prose. In doing so, S4 could look like
Table 2.1.

The descriptions of use cases are subsequently used by the designers to
define the behaviors in more precise UML terms. The use case S4 is in our
case described by a sequence diagram illustrated in Figure 2.9.
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Table 2.1. Use case S4

Actors X
Preconditions Y must be ready
Normal cases X will send Y an m1 signal and then Y will return an

m4 signal.
Exceptional cases None

2.1.3 Introduction to Sequence Diagrams

Sequence diagrams, referred to as interaction diagrams, have always been
in UML. However, the history of interaction diagrams goes back much fur-
ther than UML. By the 1980s, similar notations were in common use in the
large telecom businesses, including Siemens, Ericsson, and Alcatel. The In-
ternational Telecom Union (International Telecommunication Union (ITU))
undertook the task of standardizing such diagrams in the standard Z.120 Mes-
sage Sequence Charts (MSCs). However, when UML was made, it was based
on a slightly different dialect of MSCs. In recent versions of UML, interactions
and MSCs are very similar.

In Figure 2.6, we have a frame with a tab in the upper left corner containing
the name of the sequence diagram. This frame serves to contain the name
and as boundary for messages going in or out of the scenario as a whole.
The vertical lines are lifelines, which have names that refer to the parts (or
properties) of the class (or collaboration) that owns the behavior described
by the sequence diagram. The communication depicted in the diagram must

S1interaction S1 {1/1}sd

c : Cb : Ba : A

m1()

c1("argument")

c1():15
m2()

Fig. 2.6. Simplest sequence diagram—S1
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be consistent with the connectors of the composite structure of the enclosing
classifier (class or collaboration).

The meaning of sequence diagram S1 is that an object of type A sends an
asynchronous message to b and that b in turn calls remotely an operation c1
in part c. The type C of c will contain an operation c1 which is triggered with
the argument “argument” and which eventually returns with the value 15 in
our case. The return of the call takes place after b has sent m2 asynchronously
back to a. Thus, we distinguish between asynchronous messages depicted by
lines with an open arrow head, where the name of the message refers to a
signal, and on the other hand remote method invocations depicted by messages
with a filled arrow head, where the name of the message refers to an operation
of the target lifeline.

Some may wonder how b can send message m2 to object a while waiting
for the return of remote method invocation c1. The reason that this is con-
ceptually possible is that b may not consist of only one autonomous object,
but may actually comprise several concurrently behaving independent active
objects. One of these may perform the call (and wait for the reply), while
some other communicates asynchronously with a.

Since early versions of UML, sequence diagrams were most often used to
describe sequential programs of method invocations; it was commonplace to
believe that a sequence diagram described a sequence of messages. This is not
usually the general behavior of systems. Even in the very simple example in
Figure 2.6, we cannot really determine whether the asynchronous message m2
is before or after the return message c1:15. Furthermore, we must distinguish
between the sending of a message and the reception of it. Thus, we must
realize that a sequence diagram describes not sequences of messages but rather
sequences of events. Events are points on the lifeline, such as the sending of a
message or the reception of a message. In Figure 2.6, there are eight different
events. The sequencing of events are restricted by two invariants:

1. Events on one lifeline are ordered from the top toward the bottom.
2. The sending of a message must come before the reception of that very

message.

As long as these two requirements are met, the ordering of events is
arbitrary.

The reason for naming the sequence diagrams is so they can be refer-
enced. In doing so, it is possible to structure complex diagrams into several
simpler ones. To reference another sequence diagram, we used something sim-
ilar to subroutine calls (method calls) or macro expansions of programming
languages. In Figure 2.7, we show how S1 is referred from S2. Notice that
even though S1 covered lifelines b and c, there is no requirement that these
lifelines should appear in S2 as long as there are no message events on them
in S2. We also notice that message m1 and m4 in S2 come from or go to the
environment represented by the frame. This is depicted by having one end of
the message on the diagram frame. The environment of a sequence diagram
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S2interaction S2 {1/1}sd

d : Da : A

m1()

ref
S1

m3()

m4()

Fig. 2.7. Interaction use—S2

is where it is used. The points on the frame representing interaction points
with the environment are called formal gates.

In Figure 2.8, we see that S2 has been referenced and that the reference
has the message m1 going into it and message m4 going out of it. These
two messages correspond in position and in name with the formal gates of S2
shown in Figure 2.7. We call the connection points on S2 actual gates.

After the S2 reference, there is another frame with the tab name alt.
This is called a combined fragment. It defines trace alternatives. All traces
of S3 will start with traces from S2, because of the reference, and then the
traces will go through either the upper operand of the alt-construct or the
lower operand. The operands are separated by a dashed operand separator.
In Figure 2.8, the two operands end in a continuation. The upper operand
ends in cont1 and the lower operand with cont2. Continuations are labels that
have significance if S3 was succeeded by another diagram where operands of
the first alt-construct began with continuations cont1 and cont2. Obviously,
the meaning is that the traces only follow corresponding continuations.

Combined fragments may have different operators. The other operators
are

1. alt—alternative traces
2. opt—either the traces go through the single operand or it is skipped
3. par—parallel merge of the operand traces. Each operand trace remains

ordered in the same order, but there may be any permutation between
the operands

4. loop—loop a number of times (min and max number of iterations may
be given)
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S3interaction S3 {1/1}sd

e : Ed : Db : Ba : A

alt

ref
S2

m1()
m4()

m5()
m5()

cont1

c2()

c2()

m5()

cont2

Fig. 2.8. Gates, combined fragments, and continuations—S3

5. neg—negative traces, traces that should not happen
6. assert—all traces except for those that go through the operand are neg-

ative
7. strict—ordering of events are exactly as depicted in the diagram regard-

less of whether the events are on different lifelines or not
8. ignore—ignore certain message names
9. consider—consider only certain message names

10. critical—defines a critical region where events cannot be merged in.

Until now we have introduced a number of structuring mechanisms within
sequence diagrams, where we have always focused on the same objects or set of
lifelines. But we know that software is often built hierarchically and UML has
improved its mechanisms for describing hierarchical architectures. Sequence
diagrams can also reap benefits from the architecture hierarchy.
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S4interaction S4 {1/1}sd

y : Y
ref S2

x : X

m1()

m4()

Fig. 2.9. Decomposition—S4

In Figure 2.9, we see a very high-level view. Lifelines x and y communicate
via signals m1 and m4. It is clear that we do not really get much out of such
a diagram if we cannot see the insides of at least one of the lifelines. This is
where decomposition comes into play. Notice the text of lifeline y. It reads
“y:Y ref S2,” and this means that the details of what goes on within y can be
found by looking at sequence diagram S2—see Figure 2.7. We see that there
is correspondence between the messages going in and out of the lifeline y and
the messages going in and out of the sequence diagram S2. In fact, S2 must
be owned by the type Y, and a, b, and c are properties of Y.

Sequence diagrams focus on the interaction between lifelines. The internals
of the individual lifelines are often left to other UML diagrams. Still sometimes
we feel the need to address attributes of the interacting lifelines. In Figure 2.10,
we have augmented S3 by some data-oriented constructs. Firstly, we have
added guards to the operands of the alt-combined-fragment. The guards are
predicates that need to evaluate to true for this operand to be valid. The
guard must be placed on the lifeline with the first event of the operand. The
predicate may refer only to global and constant variables or attributes of the
lifeline covered by the guard. In Figure 2.10, the first operand has the guard
“[w>7],” which is understandable if w is an attribute of A. The second operand
has the guard “[u<17]” and u is an attribute of B. Notice that the operands
can have guards on different lifelines within the same combined fragment.

Data values can also occur as parameters to messages. In Figure 2.10,
we have shown the operation call c2(u*v) where obviously “u*v” is an input
value to the operation. Both u and v are attributes of B (or global variables,
e.g., defined within the sequence diagram itself). The return message returns
with a value, and the notation given shows what happens with it. “v=c2(-):17”
means that the c2 operation returns the value 17, and this value is assigned to
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S3xinteraction S3x {1/1}sd

e : Ed : Db : Ba : A

alt [a.w > 7]

ref
S2

m1()
m4()

m5()
m5()

cont1

[b.u<17]
c2(b.u*b.v)

v=c2(-):17

m5()

cont2

Fig. 2.10. Data: parameters and guards—S3x

attribute v. The dash just shows that there is one parameter, but it is an input
parameter and not a return parameter. It is commonplace in sequence dia-
grams to use symbolic names to values since it is usually not the case that one
knows exactly what values apply. Here, we could have said “a-prime” instead
of “17” to indicate that c2 would return some (unknown) prime number.

2.1.4 Introduction to State Machines

While sequence diagrams are used to describe the interaction between objects,
state machines are used to define the behavior of one object (or a class of ob-
jects). State machines are used in many different ways in computer science.
The theory of finite state machines has been exploited for many years.

Figure 2.11 shows a very simple state machine that still contains most of
the concepts needed. The state machine describes the behavior which is also
described by the sequence diagrams by the lifeline a:A. While the sequence
diagrams always tell only a partial story, a state machine tells the full story
of the behavior of that object. It describes all the behavior that the object
can exhibit.
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AStateMachine statemachine A :: ABehavior {1/1}

cont1

waitM2

m1() / ^m1(); 

m2() / ^m3(); 

w[>7]/^m5();

[else]

Fig. 2.11. State machine diagram

Let us go through the syntactic elements of Figure 2.11 and thereby explain
the behavior of A. In the upper left corner, we find the text AStateMachine
which is the name of the behavior. In this case, the behavior is described
as a state machine. Still in the upper left part of the frame, we find the
initial pseudostate depicted by a filled small circle. This is where the behavior
begins once the object has been created. The line from the initial state leads
to state symbol with the text Şcont1Ť. The line from the initial state is called
the initial transition, and in this case, there is nothing going on during the
initial transition. Typically, an initial transition may contain initializations of
attributes or initial sending of signals.

States are represented by rectangles with rounded corners. In UML, we
have state machines that define a finite set of states and give the states names.
In our example, we have two (simple) states “cont1” and “waitM2”. The states
represent stable situations where the state machine awaits a trigger. Typically,
a trigger is a signal reception.

The line between “cont1” and “waitM2” represents a transition which is
triggered by the consumption of the signal “m1.” The effect of the transition
is to send the m1 signal onward. This small piece of behavior can be seen in
Figures 2.6 and 2.7 by focusing only on the a:A lifeline. The general syntax
for a transition is given by triggers, then slash, then the effect. The effect is
described by an activity containing actions such as sending a signal or doing
an assignment. UML does not have a full concrete syntax for actions, but we
use the convention that sending a signal is shown by a hat symbol before the
name of the signal type (followed by arguments).

From the state waitM2, we may follow the transition triggered by m2 (with
the effect of sending an m3 signal). This leads to a diamond-shaped decision
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pseudostate named “w.” The decision pseudostate describes the choice between
different continuations based on the runtime value of some variables. In our
case, there are two alternative continuations guarded either by “[>7]” or by
“[else].” The interpretation is clearly that one branch is chosen when “[w>7]”
and the other branch in every other case. Notice that the pseudostates do
not represent stable situations like (real) states. Pseudostates are nodes in
the graph that represent description points dividing transition fragments that
together will make up a full transition. The semantics of a state machine says
that the state machine should run uninterrupted until it reaches a new stable
state. This is what we normally call “run-to-completion” with respect to state
machines.

The else-branch from the decision pseudostate leads to yet another circular
symbol slightly different from the initial pseudostate. This symbol is a final
state. There can be no transitions leading onward from a final state which in
the end means that a final state is the end of the behavior of a state machine
and it will terminate.

We have in this very brief introduction omitted some mechanisms found
in UML 2 state machines. We have not presented hierarchical states where
individual states can be decomposed into a full-fledged state machine. Com-
bined with such submachine states, we have entry and exit points representing
additional ways to enter and exit from such a complex state supplementing
the initial and final states. Furthermore, state may in general have entry and
exit activities that are defined to execute when the state is entered (or exited,
respectively).

We have also omitted that state machines may have several orthogonal
regions. Orthogonal regions come in handy in some scenarios, but their added
complexity is such that we have decided not to discuss them here.

2.1.5 Introduction to Activities

Activity diagrams are used to describe behaviors on high or low abstrac-
tion levels. Typically, in high-level process modeling, activity diagrams are
frequently used, and also in very detailed design of the implementation of
operations or the behavior effect of transitions of state machines.

In Figure 2.12, we have shown a very simple activity diagram explaining
in some more detail the implementation of the operation c2 in the class D.
On the left side of the frame, there are two pin symbols depicting the input
parameter and the return value from the operation that together represent
the interface of the operation.

Similar to the state machines, we have initial and final nodes representing
the start and the finish of the behavior. The symbols with names double prm
and add one are activity symbols where the name actually refers to some
underlying activity that is referenced. In our case, the names just represent
informal descriptions of what should be done. Since UML does not have any
concrete textual syntax for such common tasks as assignments, the names of
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D_c2 activity c2 {1/1}

'double prm'prm:Integer

Integer

[prm>4]

[else]

'add one'return Integer

Fig. 2.12. Activity diagram—behavior of operation c2

the activities may be given names as “prm=prm*2,” with the obvious intuition
originating from Java or C syntax.

The diamond node is again a decision symbol, and the branches have
guards, like transitions in state machines. For simple activity diagrams, the
interpretation is quite intuitive.

Still activity diagrams have a number of more advanced mechanisms that
we have not presented here. You may describe parallel forks, interrupts, and
partitions.
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2.2 UTP Overview

A UML profile may be seen as a specialization of UML. A profile extends and
restricts the original (UML) language. The UTP provides concepts that target
the pragmatic development of concise test specifications and test models for
testing. In particular, the profile introduces concepts covering test architec-
ture, test behavior, test data, and test time. Together, these concepts define
a modeling language for visualizing, specifying, analyzing, constructing, and
documenting the artifacts of a test system. The philosophy we adopted for
the development of these test concepts has been to make use of existing UML
2.0 concepts wherever possible, thereby minimizing the introduction of new
concepts. We identified the supplementary concepts of the testing profile by
analyzing existing test specification and test implementation techniques, in-
cluding JUnit [16] and the Testing and Test Control Notation (TTCN-3) [10].

The test architecture is the definition of all concepts needed to perform
the tests. In Figure 2.13, we see that the test architecture package imports
the definition of the system under test (SUT), which in our case is contained
within the Library system. We also import the testing profile to get access to
its predefined concepts such as the Verdict type.

In the test architecture package, we define the test context and the con-
cepts needed to define the tests. In Figure 2.14, we have defined the simu-
lated borrowers and librarians as specializations of the librarian and borrower
of the library system context. Furthermore, we have described the test con-
text where the test cases (such as TestBorrowLocallyAvailable) appear as
operations.

Figure 2.15 shows the test configuration where test components stimulate
the SUT and evaluate the responses. The test configuration is the composite
structure of the test context.

UTP System Test package UTPExampleTotal {2/4}

::LibrarySystem

::LibrarySystemTest

<<import>>

<<metamodel,profile>>

::TTDTestingProfile

<<import>>

Fig. 2.13. Test architecture
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Library System Test package LibrarySystemTest {1/2}

<<TestContext>>

LibrarySystemTestContext
theItem: Item
dp:ItemPool

TC_Reminder () : Verdict
TestBorrowLocallyAvailable ( Param1 : Item) : Verdict
DataDrivenTestCase ()
TestBorrowLocallyAvailableLater ()

<<TestComponent>>

TBorrower

::LibrarySystem::Borrower

<<TestComponent>>

TLibrarian

::LibrarySystem::Librarian::LibrarySystem::LibraryContext

Fig. 2.14. Test package

LibraryTestContext <<TestContext>>class 
LibrarySystemTestContext : LibraryContext

{1/1}

<<TestComponent>>

tb:TBorrower

<<TestComponent>>

tl:TLibrarian

<<SUT>>

home:Library
<<SUT>>

remote:Library

// coding "lossy communication"

<<DataPool>>

dp : ItemPool

Fig. 2.15. Test configuration

Here is a summary of the concepts briefly presented:

• Test architecture is the set of concepts (in addition to the UML 2.0 struc-
tural concepts) to specify the structural aspects of a test situation.

• Test context is the context of the tests allowing to group test cases, to
describe a test configuration, and to define the test control, that is, the
required execution order of the test cases.

• Test configuration is the composite structure of the test context showing
the communication structure between the test components and the system
under test.

• The SUT where one or more objects within a test specification can be
identified as the SUT.

• Test components, which are defined as objects within the test system that
can communicate with the SUT or other components to realize the test
behavior.



2.2 UTP Overview 31

In Figure 2.15, we see the test configuration of the test context Library-
TestContext. The test configuration contains two test components, tb and tl,
a borrower and a librarian. The SUT is comprised of two separate parts, the
home and the remote libraries. The parts of the test configuration are marked
with stereotypes indicating that they are more than plain UML parts.

Having defined the test structures, the test behaviors specify the actions
and evaluations necessary to evaluate the test objective, which describes what
should be tested. For example, UML interaction diagrams, state machines,
and activity diagrams can be used to define test stimuli, observations from
the SUT, test control/invocations, coordination, and actions. When such be-
haviors are specified, focus is usually given to the definition of normative or
expected behaviors. In Figure 2.16, we see two test components stimulating
the SUT (the home library). We notice also the timers on the tb lifeline guard-
ing the timing of the responses from the library. Timers are not standard in
UML, so this was added in the UTP. The timer concepts supplement the
simple time concepts defined by UML 2.0.

TestBorrowLocallyAvailableinteraction TestBorrowLocallyAvailable {1/4}sd

home:Library
<<SUT>>

tl:TLibrarian
<<TestComponent>>

tb:TBorrower
<<TestComponent>>

T1()

T1()

T2()

T2()

return pass; return pass;

search(theItem) /* Type=Book,Authors="Baker",Title="Testing with UML 2.0",ISBN=1234) */

availableNow(theItem)

ref
Authenticate

fetch(theItem) fetch(theItem)

fetch(theItem)

fetch(theItem)

ItemBorrowed

Fig. 2.16. Test case



32 2 Basics

The UTP introduces concepts for handling unexpected behaviors, provid-
ing the means to define more complete, yet abstract test models. This sim-
plifies validation and improves the readability of test models. The handling
of unexpected messages is achieved through the specification of defaults. The
concept of defaults is taken from TTCN-3 in which a separate behavior is
triggered if an event is observed that is not explicitly handled by the main
test case behavior. The partitioning between the main test behavior and the
default behavior is up to the designer. Within the testing profile, default
behaviors are applied to static behavioral structures. For example, defaults
can be applied to combined fragments (within interactions), state machines,
states, and regions.

The testing profile concepts used to describe the test behavior can be
summarized by

• Test objective allowing the designer to express the intention of the test.
• Test case is an operation of a test context specifying how a set of cooper-

ating components interact with the SUT to realize a test objective.
• Default is a concept for making the behavior description more complete

by specifying situations where the described sequence does not happen.
• Verdict is a predefined enumeration specifying possible test results, for

example, pass, inconclusive, fail, and error.
• Validation action is performed by the test component to indicate that the

arbiter is informed of the test component’s test result.
• Timers are used to manipulate and control test behavior as well as to

ensure the termination of test cases.
• Time zones are used to group components within a distributed system,

thereby allowing the comparison of time events within the same time zone.

Another important aspect of test specification is the definition and en-
coding of test data. For this, the UTP supports wildcards, data pools, data
partitions, data selectors, and coding rules. Wildcards are very useful for the
handling of unexpected events or events containing many different values.
Therefore, the UTP introduces wildcards allowing the specification of (1) any
value, denoting any value out of a set of possible values, and (2) any or omitted
values, denoting any value or the lack of a value (in the case where multiplic-
ities range from 0 upward).

Figure 2.17 shows a data pool concept (ItemPool), data partitions (Item-
Partition and its specializations), and data selector (selectItem) that support
the repeated execution of test cases with different data values to stimulate the
SUT in various ways. Data pools are associated with test contexts and may
include data partitions (equivalence classes) and concrete data values. Data
selectors provide different strategies for data selection and data checking. The
testing profile also supports the notion of coding rules allowing the user to
define the encoding and decoding of test data.

The concepts discussed above provide the capabilities required to construct
precise test specifications using UML 2.0. The testing profile includes both
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DataPool package LibrarySystemTest {2/2}

<<DataPool>>

ItemPool

<<DataPartition>>

ItemPartition
itm:Item[*]

selectItem():Item

valid1 invalid1

subpartition*

<<DataPartition>>

BookPartition

<<DataPartition>>

CDPartition

<<DataPartition>>

DVDPartition

Fig. 2.17. Test data

structural and behavioral elements and provides key domain concepts from
testing that make test specification efficient and effective.

In addition to those concepts explained earlier, there are also a few more
concepts that are available for advanced purposes:

• The scheduler controls test execution and test components. Schedulers are
responsible for the creation of test components a synchronized start of the
test behavior on the different test components, and for the detection of
test case termination.

• The arbiter provides a means for evaluating test results derived by different
objects within the test system in order to determine an overall verdict for a
test case or test context. We refer to this evaluation process as arbitration.
Users can either use the default arbitration scheme specified by the profile
(i.e. a verdict can only get worse) or define their own arbitration scheme
using an arbiter.

• A test log provides together with a log action a means to log entries during
the test execution for further analysis.

• A finish action denotes the completion of the test case behavior of a com-
ponent, without terminating the component.

• A determAlt operator is provided for interactions to specify the deter-
ministic and sequential evaluation of guards of alternative behavior. The
determAlt operator always selects the alternative of the first guard, which
is fulfilled.
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Library Example Introduction

Throughout this book, we introduce and explain the concepts and the appli-
cation of the UML Testing Profile(UTP) by using a simple library system. We
choose a library system, because most readers know the basic functionality
of a library. Most people have been customers of a library and searched for
a book, borrowed a book, and returned a book. As a result, they have an
intuitive understanding of the elements managed by such a system. A book
may be modeled as a class with attributes such as title, author, status, price,
and last borrower. In this chapter, we will briefly introduce the library exam-
ple including a description of the system structure, its behavior, and the data
structures managed by the library system.

3.1 What Is a Library?

A library is an institution that makes items such as books, videos, records,
and DVDs. available to borrowers for a limited period of time. The borrowers
will return the item to the library after this limited period of time and the
item may subsequently be lent to other borrowers. Sometimes the item is not
locally available, but may be remotely borrowed from a collaborating library.
When an item is acquired from a remote library, the home library acts as a
borrower in relation to the remote library.

We summarize the functionality of a Library in a use case diagram as
shown in Figure 3.1. This illustrates how the borrower and the librarian are
involved in use cases like BorrowItem. The use cases will be formalized with
other UML diagrams.

The main concepts are given in the class diagram of Figure 3.3. Our
model will mostly apply asynchronous signaling and the signals are defined in
Figure 3.4.

The architecture of the library context is given by Figure 3.5. The direct
communication between the borrower and the library is meant to describe a
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Use case Library Overview package LibrarySystem {1/4}

home : Library

Borrower

RemoteLibrary

Librarian

Administrator

ReturnItem

BorrowItem

BorrowRemoteItem

GetReservedItem

MaintainBorrowerBase

AddItemToBase

RemoveItemFromBase

Reminder

<<extends>>[Item available later]

<<extends>>[item available remotely]

<<extends>>
<<extends>>

Fig. 3.1. Use case diagram for the Library example

situation where the borrower himself/herself searches on a computer without
the intervention of the librarian.

The interaction overview diagram in Figure 3.6 presents a formalization of
the BorrowItem use case behavior described in Figure 3.2. In-line interactions
and references to interactions combined by means of flow lines and conditional
branches show the possible flow of control for the BorrowItem use case. Each
flow of control starts in the start node and ends in one of the end nodes. The
interactions referred to in Figure 3.6 are presented in Figures 3.7, 3.8, 3.9,
and 3.12.
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Fig. 3.2. Borrow Item use case

LibraryClasses package LibrarySystem {2/4}

Borrower

Library
Name : String
Location : String

Item
Type:ItemTypes
Authors:String[1 .. *]
Title:String
ISBN:String[10]
PublishedDate:String
-available: Boolean
-returnDate: Integer

<<enumeration>>

ItemTypes
Book
DVD
CDROM
Video

+belongs keeps
1 0..*

LibraryCard
valid: Boolean

#card
1 0..1

LibraryContext

b
Librarian

checkLibraryCard ( libcard : LibraryCard)

l

Fig. 3.3. Classes of the Library
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<<signal>>

search
item : Item

<<signal>>

availableNow
item : Item

<<signal>>

fetch
item : Item

<<signal>>

availableLater
item : Item

<<signal>>

item
item : Item

<<signal>>

reserve
item : Item

<<signal>>

locallyUnavailable
item:Item

<<signal>>

tryRemote
item:Item

<<signal>>

remotelyUnavailable
item:Item

<<signal>>

libraryCardInfo
card: LibraryCard

<<signal>>

libraryCardInfoAck
valid: Boolean

<<signal>>

returning
item : Item

Fig. 3.4. Signals of the Library

LibraryContextStructure class LibraryContext {1/1}

home : Library

l: Librarian

b : Borrower

remote : Library

Fig. 3.5. The composite structure of the Library context

A comparison of Figure 3.6 with Figure 3.2 shows the correspondence of the
representation. The flow of control through the first branch marked available
now corresponds to the flow described by the items 1 and 2.1 in Figure 3.2.
The flow of control through the available later branch reflects the flow through
the items 1 and 2.2. The remaining three flows of control in Figure 3.6 cover
the case where an item is requested from the remote library. The two flows of
control that end in the states ItemAvailableLater and ItemUnavailable refer to
the flows that end in item 2.3.1 and 2.3.2 in Figure 3.2. The third flow that
ends in ItemBorrowed describes the situation where an item, which is available
locally, is owned by the remote library.

Let us describe the different scenarios in more detail. All borrowing sce-
narios start with a search for the item to be borrowed (see the first referenced
interaction in Figure 3.6).

If the item is available (Figure 3.7), the borrower has to authenticate and
can fetch the item from the librarian. The authentication procedure, refer-
enced in Figure 3.7, is shown in Figure 3.11.

If the item is unavailable (but owned by the library), Figure 3.8 describes
the behavior of the library user. Notice that the authentication and remote
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borrowing are both optional, as the user may decide not to wait to borrow
the book.

One complex behavior of this use case is the situation, where an item
is requested from a remote library. This is described separately by the Bor-
rowItemNonlocally (which references BorrowRemoteItem) interaction referenced
in Figure 3.6 and shown in Figure 3.9.

BorrowRemoteItem in Figure 3.10 includes an alt statement, describing the
two alternative behaviors described by this interaction. The first alternative
describes the case where the item is available. It ends in a situation where the
item is reserved and will arrive at the local library later. The second alternative
describes the situation where the item cannot be borrowed remotely. The
BorrowRemoteItem interaction in Figure 3.10 also includes optional behavior
that describes that the Borrower may decide to reserve an item after he has
been informed that the item is only available later.

BorrowItemOverview activity BorrowItemOverview {1/1}

ref

search();

ref

BorrowItemAvailable(); ref

BorrowItemLater();

ref

BorrowItemNonlocally();

[available now] [available later]

[not locally available]

Item Borrowed

item unavailable

Item available later [available later]

ref

GetReservedItem();

Item Borrowed

// continuation
symbols
were not 
possible

Fig. 3.6. Borrowing an item
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The three different sub-behaviors of BorrowItemOverview are shown in Fig-
ures 3.7, 3.8, and 3.9. They will give rise to individual test cases.

BorrowItemAvailableinteraction BorrowItemAvailable {1/1}sd

l : Librarian home : Libraryb : Borrower

availablenow(theItem)

ref
Authenticate

fetch(theItem) fetch(theItem)

item(theItem)item(theItem)

ItemBorrowed

Fig. 3.7. Borrow Item that is available locally

Figure 3.6 illustrates that the borrower need not authenticate himself until
he is about to borrow the book. This is because authentication is located in the
interactions (Figures 3.7, 3.8, and 3.9) which are the possibilities referenced
after a search. Searching itself does not require authentication.

In Figure 3.8, the opt construct defines that the borrower may decide
not to reserve the book at all since it was not readily available. Similarly, in
Figure 3.9, the opt construct is used to indicate that the borrower may decide
not to borrow the book if it is only available from a remote library. Again the
borrower may decide not to borrow because the book is not locally available.
Otherwise authentication is needed before the BorrowRemoteItem behavior
(Figure 3.10) occurs. The BorrowRemoteItem situation corresponds to use case
2.3 in Figure 3.2. The book is not available locally and the Librarian searches
remotely. Whether the remote library has the book available directly or later is
of less importance as the Borrower must wait for the physical transfer anyway
and the Borrower is told that the item will be available later. He may then
choose to reserve the item, and sooner or later the item will be transferred
from the remote library to the home library. Then the Borrower can pick it up
according to the scenario shown in Figure 3.12. This corresponds to use case
2.3.1 in Figure 3.2. If the book is not available at the remote library either,
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BorrowItemlaterinteraction BorrowItemLater {1/1}sd

l : Librarian home : Libraryb : Borrower

opt

availableLater(theItem)

ref
Authenticate

reserve(theItem) reserve(theItem)

ItemAvailableLater

Fig. 3.8. Borrow item later knowing that the book will be available at the local
library later

BorrowItemNonlocallyinteraction BorrowItemNonlocally {1/1}sd

remote : Libraryl : Librarianb : Borrower home : Library

opt

locallyUnavailable(theItem)

ref
Authenticate

tryRemote(theItem)

ref
BorrowRemoteItem

Fig. 3.9. Borrow item that is not locally available
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then the book is considered unavailable, and this information is given to the
Borrower corresponding to use case 2.3.2 in Figure 3.2.

BorrowRemoteIteminteraction BorrowRemoteItem {1/1}sd

b : Borrower home : Library remote : Libraryl : Librarian

opt

alt

alt

search(theItem)

else

else

availableNow(theItem)

availableLater(theItem)

{} available now

{} available later

availableLater(theItem)

reserve(theItem) reserve(theItem)

ItemAvailableLater

locallyUnavailable(theItem)
remotelyUnavailable(theItem)

ItemUnavailable

ref
BorrowItemAvailable

item(theItem)

search(theItem)

reserve(theItem)

Fig. 3.10. Remote loan

The use case description in Figure 3.2 structures the behavior into normal
and exceptional behavior. The exceptional cases are all related to abnormal
outcomes of the authentication procedure which is required for the reservation
and retrieval of items. For example, Figure 3.8 presents the BorrowItemLater
interaction (also referenced in Figure 3.6) which refers to the interaction Au-
thenticate. The normal authentication scenario is shown in Figure 3.11. It
would also be possible to include the exceptional cases in this diagram, but
separate diagrams for different cases improve the readability. Therefore, we
have chosen here to show only the normal authentication situation where the
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library card is ok and no restrictions are placed upon the bearer before exe-
cuting his/her current requests.

Authenticateinteraction Authenticate {1/2}sd

home : Libraryl : Librarianb : Borrower

libraryCardInfo(b.card)

libraryCardInfoAck(true)

checkLibraryCard(b.card)

{} b.card.valid==true;

Fig. 3.11. Simple authentication of library card

For completeness, we also give in Figure 3.12 the GetReservedItem
situation.

3.2 What Is Inside a Library?

We have introduced the concept of a library from the standpoint of a borrower,
an outside person who visits this kind of institution and takes advantage of
its services.

The computer scientist or system designer who is going to construct the
supporting computerized system for the library will also have to consider the
constituents of the library information system. The construction of a library
system is not in itself our task in this book, but it is important to point out
that the library system has constituents and eventually that these constituents
may be tested separately or in combination with others to form the whole
system.

One approach to modeling the library is to look at what we may find inside
the institution. We find the physical items that are to be lent to the borrowers.
We also find search terminals that the borrowers can use. We may also find
means for security, for example, a gate that controls unauthorized removal of
items. Furthermore, we have the librarian’s unit that is used for registration of
loans and returns. We describe this understanding of the insides of a Library
in Figure 3.13. This description is not meant to form the basis of a serious
implementation, but rather to serve as the foundation for explaining different
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GetReservedIteminteraction GetReservedItem {1/1}sd

l : Librarian home : Libraryb : Borrower

ItemAvailableLater

availableNow(theItem)

ref
Authenticate

fetch(theItem) fetch(theItem)

item(theItem)item(theItem)

ItemBorrowed

Fig. 3.12. GetReservedItem after the item has become available

kinds of testing. This again emphasizes the important point in modeling that
we model only what we find relevant. Thus, there may be many real items
in a library that we do not model, such as green plants and even the book
shelves.

3.3 Testing a Library

In the rest of this book, we shall go in some detail into the testing of this
Library. We shall give examples of testing the insides of the library as well
as testing the library as a whole. We hope the library example will be both
intuitive for the reader and complex enough to illustrate the mechanisms of
the UTP.
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Inside the library active class Library : Borrower {1/1}

exitgate:EGate

central:LibrarianDesk[1 .. *]

itembase:ItemForLoan[*]

Fig. 3.13. The composite structure of the Library itself
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Functional Testing



Overview

Functional testing is testing against the functional requirements of the SUT.
It focuses mainly on the outputs generated by the SUT in response to selected,
inputs and execution conditions. Functional testing is black-box testing and,
therefore, both terms are often used as synonyms in literature. UML-based
testing of nonfunctional requirements, such as real time and performance test-
ing, will be presented in Part III of this book.

UML is a specification language and allows functional requirements to be
specified using UML diagrams. For example, the scenarios described in use
cases directly corresponds to a set of test cases targeting a common functional
capability. Sequence diagrams, often provided as refinement of use case be-
havior, can be seen as abstract test cases. Further structural information in
UML diagrams, such as state charts defining the behavior of a class, may also
be used to identify test cases for functional testing.

Black-box testing approaches can be used to define tests for all levels of
testing in the V- and W-model (Figures 1.1 and 1.2. We will therefore describe
the use of the UML testing profile for Unit Level Testing (Chapter 4), for
Component and Integration Level Testing (Chapter 5), and for System and
Acceptance Level Testing (Chapter 6).

We would like to mention that glass-box and grey-box testing approaches
are domains for Unit, Component, and Integration Level Testing. Glass-
box and grey-box testing requires knowledge about implementation details
to define coverage criteria for the implementation or communication details
among implementation entities.

This book only deals with black-box testing approaches because we base
the test specification on UML models and not on implementations. However,
some principles of these kinds of testing approaches can be applied to UML
models to assist in the identification of test cases.
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Unit Level Testing

Unit level testing is used to verify the behavior of a single unit within a
program. Herein, the unit which should be tested must be isolated from other
units within the system in order to prevent interference of test results. In
object-oriented programming, a single unit is typically a class or operation
defined within a class. Typical programming errors which can be discovered
during unit level tests include division by zero, wrong path setting, or incorrect
pointer settings.

Black-box testing can be applied for all levels of testing. They only differ
in the kind of System Under Test (SUT) they address. While component
and integration testing is performed on several units of a system working
together, and system testing refers to the whole system, unit level testing is
performed on individual units within the system. In this chapter, we discuss
the concerns of unit level testing, including how to use the UTP for unit level
test specifications. The use of the profile is illustrated by means of the library
example.

4.1 UTP and Unit Level Testing

Unit level tests can be derived from UML models. A unit in a UML model
might be a single class or an operation. Black-box test is performed without
the knowledge of the internal structure of the SUT. Thus, the prerequisite to
unit testing the SUT using UML is that the tester must get access by calling
public operations or by sending signals via an interface.

�Tip 1 Unit level test scope
For unit level testing, an SUT is an individual unit (e.g., a class or an oper-
ation) which is to be tested.
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�UTP Concept 1 SUT
SUT stands for system under test. For unit level testing, the SUT is an object
or an operation which can be tested by calling operations or sending signals
via public interfaces.

Before defining a test suite in UML, a new package for unit level testing
needs to be created, and the system model must be imported to the test
package in order to get access to the SUT. Figure 4.1 illustrates the package
dependencies of the TTDTestingProfile package with predefined UTP concepts,
the system model package LibrarySystem of the Library Example and its newly
created test package LibraryUnitTest. The test model imports the system model
in order to get access to the SUT during testing. To enable test specification,
the test model needs import of the UTP concept package.

UTP Methodology Rule 1 Creating UTP test model
1. Create a new UML package for the unit level test.
2. Import the SUT system model package.
3. Import the package where UTP concepts are defined.

UTP Unit Test package UTPExampleTotal {1/4}

::LibrarySystem

::LibraryUnitTest

<<import>>

<<metamodel,profile>>

::TTDTestingProfile
<<import>>

Fig. 4.1. Package imports



4.1 UTP and Unit Level Testing 53

When using UTP, tests are performed within a given contex. This context
is where test cases are defined, as well as the test configuration and related
concepts. In a unit level UTP model, a test context is a stereotyped class
which contains the unit level test cases as operations. In order to create a test
context within the UTP model, a new UML class needs to be created and the
UTP test context stereotype must be applied to the class.

�UTP Concept 2 Test context
The test context is a stereotyped class that contains the test cases (as opera-
tions) and whose composite structure defines the test configuration. The clas-
sifier behavior of the test context provides the test control, which determines
the order of execution of test cases.

UTP Methodology Rule 2 Define test context in a UTP test model.
To create a test context class for a unit level test, the following steps are
needed:

1. Define a test context class with stereotype <<Test Context>>.
2. List all the test cases as public operations in the test context class.

Figure 4.2 shows the test context definition for the Library example. Inside
Package LibraryUnitTest, a test context class called LibraryUnitTestContext is
created and assigned with stereotype <<TestContext>>. This test context

Library Unit Test package LibraryUnitTest {1/1}

<<TestContext>>

LibraryUnitTestContext

book:ItemForLoan

UnitTest_ItemForLoan_Interaction():Verdict
UnitTest_ItemForLoan_Activity():Verdict

Fig. 4.2. Test context
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class owns an attribute called book of class ItemForLoan and defines two test
cases called UnitTest_ItemForLoan_Interaction() and UnitTest_ItemForLoan_
Activity(). The concrete behavior specification of those two test cases are
shown in other diagrams later in this chapter. Both test cases are public
operations returning test verdicts as results.

As the names of the test cases already indicate, our unit level tests are
performed on library items for loan. These operate on the concrete system
specification related to the library items. These are part of the specification
of the library system itself.

The concrete classes and signals that are part of the library system are
available to the unit test package as they have been imported from the Li-
brarySystem package. Figure 4.3 shows the class and signal definitions of the
library system. For our unit level testing example, the class ItemForLoan is the
class to be tested. An Item in a library can be a Book, CD, DVD, or Video. It
has several attributes, including one or more authors, a title, an ISBN num-
ber, and a publishing date. The ItemForLoan class represents an item that can
be loaned to a library user. It adds the perspective that an item can be in
either a good or a bad condition. If an item is in a bad condition, it needs to

Classes of the Library package LibrarySystem {4/5}

<<enumeration>>

ItemCondition

ok
broken

<<signal>>

repaired

item : Item

ItemForLoan

+condition : ItemCondition
itm: Item

ItemForLoan ()
timer LoanPeriod()

<<signal>>

reminder

<<signal>>

buyNew

item: Item

Item

Type : ItemTypes
Authors : String[1 .. *]
Title : String
ISBN : String[10]
PublishedDate : String
- available : Boolean
- returnDate : Integer
+ belongs : Library[1]

<<enumeration>>

ItemTypes

Book
DVD
CDROM
Video

<<signal>>

fetch

item : Item

<<signal>>

reserve

item : Item

<<signal>>

returning

item : Item

<<signal>>

search

item : Item

Fig. 4.3. Classes and signals in the Library System
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be repaired before handed out again to another borrower. The signals shown
in Figure 4.3 illustrate the ways that a tester can trigger various behaviors on
the SUT.

4.1.1 State Machines

In order to generate test cases for the SUT ItemForLoan, we need a com-
plete behavioral specification of the SUT class. UML state machines are the
standard way to describe the behavior of a class.

�Tip 2 State machine adequacy
In order to derive useful test cases, the class behavior must be described. State
machines provide good means for class behavior description. Test cases can
be generated from the state machine specification, and the more precise and
complete the state machines are, the better the derived test cases.

In our library example, class ItemForLoan is to be tested. Figure 4.4 illus-
trates its behavior specification by a State Machine. An ItemForLoan can exist
in various states. In its initial state, it is available to any borrower. After it has
been borrowed by a certain library user, it may be returned back in a good or
broken condition. In latter case, the item will be repaired (toBeRepaired). In
case that the item is still borrowed, but requested by another user, the item
will be reserved for that user. When a reserved item is returned, depending on
the condition of the item, it will be repaired (repairForReserver or availableFor-
Reserver). If it is available for the reserver, the reserver gets the item as soon
as it is returned, and the item moves into the borrowed state. In cases where
a broken item cannot be repaired, it will be replaced by a new version of the
item.

4.1.2 Interactions

In UTP, a test scenario is described informally by a test objective, which is
simply the textual description of the purpose of a test case. Test cases are
the concrete realization of a set of behaviors which achieve the test objective.
When using state machines for behavioral specification, test cases can be gen-
erated by simulating the behavior of the state machine. This simulation seeks
to achieve a given coverage criteria (e.g., transition coverage, state coverage)
[2] by ensuring that test data values are used to trigger the SUT in a way that
helps achieve the coverage criteria.

In the library example, one test objective may be to “verify that a broken
item returned to the library is sent for repair.” To achieve this objective,
concrete test cases with message flow between the SUT and the test system
are created. This can be done using UML interaction diagrams or activity
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Behavior of ItemForLoan statemachine ItemForLoan :: ItemForLoan {1/3}

available

reserved

borrowed toBeRepaired

fetch(itm)

returning(itm)
[condition == broken]

repaired(itm)
[condition == broken]
/buyNew(itm);

returning(itm)
[condition == ok]

repaired(itm)
[condition == ok]
/ availableNow(itm);

reserve(itm)

fetch(itm)
/availableLater(itm);

availableForReserver

returning(itm)
[condition == ok]
/availableNow(itm);

fetch(itm)

repairForReserver

returning(itm)
[condition == broken]

repaired(itm)
[condition == broken]
/buyNew(itm);

repaired(itm)
[condition == ok]
/ availableNow(itm);

fetch(itm)
/availableLater(itm);

fetch(itm)
/availableLater(itm);

fetch(itm)
/availableLater(itm);

Fig. 4.4. State machine of item

�UTP Concept 3 Test objective
A test objective describes the purpose of the test in an informal way.

diagrams to show communication between the test system and the SUT. For
unit level test cases in a UTP model, the test context instance represents the
test system.

Depending on predefined test strategies and coverage criteria (e.g., state-
ment, branch, path, or other coverage criteria), the state machine of ItemFor-
Loan can be simulated and the graph can be traversed in order to derive the
test cases. In this example, we utilized state coverage criteria, which seeks to
reach all of the states in the ItemForLoan state machine (Figure 4.4) at least
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UTP Methodology Rule 3 Specifying test cases with interaction diagrams
For a unit-level test case, the test context instance can be used to trigger
the SUT. Interaction diagrams provide good means for detailed test behavior
specification. This is done using the following steps:

1. Define a test case by creating a new interaction diagram.
2. Initiate the test case with an instance of the test context.
3. The test context instance creates the SUT instances and triggers it using

operation calls or signals.
4. The order of these calls/signals is derived from the system model by sim-

ulation with an appropriate coverage criterion.
5. At the end of the test case, set the unit level testing verdict by returning

a verdict value. For system derived test cases, this is typically pass.

once. A single test case is enough to achieve this coverage criterion. Figure 4.5
shows the derived unit level test case called UnitTest_ItemForLoan_Interaction
in an interaction diagram.

�UTP Concept 4 Test case
A UTP test case concretizes a test objective by triggering inputs and observing
outputs of the system. A test case always returns a test verdict.

The diagram shows in the beginning the test context instance TestLibrary-
TestContext, which creates a new instance called book of class ItemForLoan.
The item is available and will be fetched by the user. In its borrowed state,
it can be reserved by a further user and when the first borrower returns the
item in a broken condition, it gets repaired for and borrowed to the reserver.
When the reserver returns the item in an irreparable condition, the item is
replaced by a new exemplar. If this test case terminates successfully, all states
of the ItemForLoan object will have been covered.

A test must deliver its result in a certain form to the external world.
In UTP, they are in the form of test verdicts. Predefined verdicts in UTP
include pass, fail, inconclusive, and error. The pass verdict indicates that the
SUT behaves correctly for the specified test behavior. The fail verdict describes
that the SUT does not behave according to the behavior. The inconclusive
verdict is used when the test neither passes nor fails, but is still valid according
to the specification of the SUT. Finally, the error verdict indicates an issue
within the test system itself.

Test cases generated automatically from the system specification typically
represent the expected correct behavior of the system. Thus, the test results
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UnitTest_ItemForLoan1interaction UnitTest_ItemForLoan_Interaction {1/1}sd

book

� � � � � 	 	

: LibraryUnitTestContext

� � � � � � � � � � � � � 	 	

return pass;

condition=broken;

condition=ok;

condition=broken;

available

borrowed

reserved

repairForReserver

availableForReserver

borrowed

toBeRepaired

ItemForLoan(book,ok)

fetch(book.itm)

returning(book.itm)

repaired(book.itm)

fetch(book.itm)

reserve(book.itm)

returning(book.itm)

buyNew(book.itm)

availableNow(book.itm)

repaired(book.itm)

Fig. 4.5. Test case—interaction diagram
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are usually set to pass at the end of these test cases. Accordingly, the verdict of
test case UnitTest_ItemForLoan_Interaction in our library example is assigned
to pass.

�UTP Concept 5 Test verdicts
In UTP, each test case returns a verdict. Predefined verdicts are pass, fail,
inconclusive, and error.

4.1.3 Activity Diagrams

Test cases can also be illustrated by UML activity diagrams. Activity dia-
grams provide a slightly different view of the system behavior than interaction
diagrams. While the latter concentrates on the communication between the
objects, an activity diagrams lays its focus more on the local behavior of an
object.

Figure 4.6 shows a test case for the Library Example in an activity di-
agram, also derived from the state machine introduced in Figure 4.4. Here,
the operation calls and message exchanges between the objects are not in the
focus. Instead, the internal activities of each of the objects are illustrated.

UTP Methodology Rule 4 Specifying test cases with activity diagrams
For a unit-level test case, the test context instance can be used in order to trig-
ger the SUT. Activity diagrams provide good means for detailed test behavior
specification. To do so, the following steps are needed:

1. Define a test case by creating a new activity diagram.
2. Initiate the test case with a test context instance by creating a partition

for the test context in the activity diagram.
3. Parallely to test context, a partition for the SUT instance is needed.
4. Derive test behavior from the system model by simulation and applying

coverage criteria.
5. At the end of the test case, set the unit level testing verdict by returning

a verdict value. For test cases derived from the system specification, this
is usually the pass value.

Two partitions called LibraryUnitTestContext and ItemForLoan and their
activity flows are shown in Figure 4.6. The transitions and state information
in the state machine of ItemForLoan are transformed to activities in the dia-
gram. Within the ItemForLoan partition, the availability of the library item is
checked. Depending on its status, two different activity flows are traversed. In
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UnitTest_ItemForLoan_Activity activity UnitTest_ItemForLoan_Activity {1/1}

ItemForLoanLibraryUnitTestContext

'fetch Item'

'check availability'

book.itm.available

'reserve item'

false

'make reservation'

'get item' book.condition

true

ok

'repair item'

broken
'return pass;'

Verdict

Fig. 4.6. Test case—activity diagram

this test case, the end of the activity diagram can only be reached if the book
is in a good status and is available to another borrower. In this case, the test
result will be set to pass.

4.2 Chapter Summary

In this chapter, we introduced several key UTP concepts, including SUT, test
context, test cases, and predefined UTP test verdicts. These concepts can be
used to model unit level tests (as well as other types of tests). We use state
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machines as a basis for modeling the behavior of the SUT. We then illustrate
how state machines can be simulated to allow the derivation of test cases.
These are generated by traversing the graph using user-defined test strategies
and coverage criteria. The test cases are modeled using behavior diagrams such
as interaction diagrams (for focusing on communication between objects) or
activity diagrams (for focusing on the local activity of the objects in the test
case).
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Component and Integration Level Testing

As described in Chapter 4, a software unit is the smallest separately testable
element in the design of a software system. They cannot be subdivided into
other components. A software component is composed of software units. It is a
system element offering a predefined service and is able to communicate with
other software components. Software components may be tested in isolation
or in combination with other components. The former is called component
level testing, whereas the latter refers to integration level testing. Integration
level testing is the phase of software testing in which software components are
combined and tested as a group.

During the development of complex software systems, software components
are often in different development states. Whereas one component may be in
its implementation phase, another component may be ready for integration
with other components. Different development states cannot be avoided. They
are the consequence of parallel development in several groups of develop-
ers, different size and complexities of the software components and project
priorities.

Component and integration level testing is therefore often confronted with
the problem that the service provided by the component or a group of com-
ponents under test (the SUT) requires functionality of components which are
not ready for integration. Delays of the component and integration level test-
ing process can be avoided by the development of emulators for the missing
functionality and an elaborated project plan which considers the integration
order of the components.

Due to the similarities of component and integration level testing, we cover
both in this chapter. To ease the reading, we will mainly use the term inte-
gration level testing. Only where necessary, we will refer to component level
testing.

In this chapter, we will discuss some basics on integration level testing
and show how the UML Testing Profile (UTP) can be utilized for this kind
of testing.
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5.1 Integration Strategies and Integration Level Testing

The objective of integration level testing is to test the smooth interoperation
of components. Some properties may be tested statically, whereas errors re-
lated to the semantics of the communication can only be tested dynamically.
For example, a compiler can statically check the correct usage of interfaces
provided by a component, whereas the exchange of syntactically correct but
semantically incorrect information can only be detected dynamically.

Integration level testing depends heavily on the integration strategy used
for assembling the whole system. Well-known integration strategies are big-
bang, bottom-up, top-down, and adhoc integration:

• The integration of the whole system in onestep is called big-bang integra-
tion. In this case, integration level testing starts after the finalization of
all components. The problems with this approach are that the integration
level testing starts very late in the development process and that all the
integration problems appear at once. Testing may become complicated,
and it can be very difficult to identify the source of errors observed during
the test.

• A bottom-up integration strategy requires a hierarchical system structure.
Software components with basic functionality are assembled to yield more
complex components, which are integrated to produce even more complex
subsystems, etc., until the complete system is produced. Testing is done
in all steps of integration. The advantage of this strategy is that only test
drivers, but no emulators, are needed for testing because the availability of
already tested lower-level components is a prerequisite for the integration
of the next level of hierarchy. The problem with this strategy is that the
test of the overall functionality of the system starts very late, and therefore,
design and efficiency problems related to the basic functions of the system
may be detected only at the end of the integration level testing.

• Top-down integration also requires a hierarchical system structure. It is
the opposite of bottom-up integration. Integration starts from the top, and
step by step lower-level functionality is added until the complete system
is realized. For integration level testing, the main disadvantage of this
strategy is that the lower-level functionality is not available and has to
be emulated. This is normally done by implementing emulators for the
missing components.

• Bottom-up integration and top-down integration require a hierarchical
systemk structure and predictable finalization dates for the different com-
ponents. In most cases, these prerequisites cannot be guaranteed. There-
fore, the most popular integration strategy is adhoc integration, that is,
components are integrated whenever they are finalized and whenever it
is reasonable. Integration testing with an adhoc integration strategy also
requires the emulation of missing functionality.
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Several integration strategies require emulators for missing functionality.
These emulators belong to the test configuration, which will be explained in
the next section.

5.2 Test Configuration, Test Components,
and Emulators

Test configurations are needed for all kinds of testing and are therefore not
unique to integration level testing. However, due to the emulators mentioned
in the previous section, test configurations for integration level testing are
often more comprehensive than for other kinds of testing. Therefore, we in-
troduce the UTP concept of test configuration (UTP concept 6) in this section.
The definition of test configuration refers to the UTP concept test component
(UTP concept 7).

�UTP Concept 6 Test configuration
A test configuration is the collection of test component objects with connec-
tions between the test component objects and from test component objects to
the SUT. The test configuration defines both (1) test component objects and
connections when a test case is started (the initial test configuration) and (2)
the maximal number of test component objects and connections during the
test execution.

�UTP Concept 7 Test component
A test component is a class of a test system. Test component objects realize
the behavior of a test case. A test component has a set of interfaces via which
it may communicate via connections with other test components or with the
SUT.

Test components are understood as classes which play the role of users of
the SUT, that is, they test the capabilities provided by the SUT. They drive
the test and calculate an overall test verdict. Driving the test means that test
component instances stimulate the SUT and observe the responses from the
SUT.

A further class of objects in integration level testing are emulators, which
have already been mentioned in the previous section. Emulators simulate miss-
ing functionality which is needed by the SUT to provide its service. They differ
from test components, in that they do not provide information that is used
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to set the verdict of the test case. For testing, we can distinguish three kinds
of emulators:

• Dummies are very rudimentary implementations of missing functionality.
Often they only provide interfaces definitions such as function headers,
which are necessary to compile the subsystem without errors.

• Stubs provide enough functionality for testing. A stub may be implemented
for a certain set of tests and react for these tests in a reasonable manner.

• Mock Objects have more intelligence than dummies and stubs. They may
be complete simulators of the missing functionality.

Emulators can be seen as utilities of a test configuration. Therefore, they
should be defined as UML utilities. Emulators and, if necessary, different kinds
of emulators can be distinguished from other objects by using a name prefix
(Methodology Rule 5).

UTP Methodology Rule 5 Definition of emulators
Emulators such as dummies, stubs, and mock objects should be defined as
utilities in a test configuration for component and integration level testing.
Name prefixes like emulator_ (for emulators in general), dummy_, stub_, or
mock_ can be used to distinguish emulators from other kinds of utilities.

5.3 UTP and Integration Level Testing

Similar to unit level testing (Section 4.1), we start the specification of an
integration level test for our library example with the definition of the new
package Library Integration Test (Figure 5.1) which imports the UML model
of the library system and the UTP (the imports are not shown in Figure 5.1).

For defining an integration level test for our library example, we have
to first identify the components which are integrated into the SUT, the test
components driving the test and utilities emulating missing functionality. As
an example, consider a situation close to finalization of the library system,
where the functionality of remote loans is only implemented for the home
library, but not for the remote side. In order to test this functionality, the
SUT is defined by the home library; we have two test components playing the
roles of borrower and librarian and a utility emulating the needed functionality
of the remote library. These objects and the relations among them are shown
in the test context in Figure 5.2. The definitions of test context and the test
components are shown in Figure 5.1. Both test components inherit properties
from the corresponding objects in the library system.

The utility Mock_remote (Figure Test Context for Integration Level Test-
ing) is a mock object. It is considered to be an instantiation of the library
class of the library system. If the behaviour of the Library class is defined very
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Library Integration Test package LibraryIntegrationTest {1/1}

::LibrarySystem::LibraryContext

<<TestContext>>

LibraryIntegrationTestContext
availableItem:Item
unavailableItem:Item

TestBorrowRemoteItemAvailable (anItem:Item):Verdict
TestBorrowRemoteItemNotAvailable(anItem:Item):Verdict

::LibrarySystem::Borrower

<<TestComponent>>

TBorrower ::LibrarySystem::Librarian

<<TestComponent>>

TLibrarian

Fig. 5.1. Package LibraryIntegrationTest

LibraryTestContext <<TestContext>>class 
LibraryIntegrationTestContext : 

LibraryContext

{1/1}

<<TestComponent>>

tb:TBorrower
<<SUT>>

home:Library Mock_remote:Library

<<TestComponent>>

tl:TLibrarian

// Utility

Fig. 5.2. Test context for integration level testing

precisely, it may be possible to generate the code of the mock object automat-
ically from its specification. Emulators with less intelligence, that is, dummies
and stubs, maybe generated directly from the test specification (Tip 3).

�Tip 3 Generation of emulator objects
Code generation and simulation facilities of UML tools may be used to generate
emulator objects for integration and component level testing automatically.
Intelligent emulators, that is, mock objects, may be generated from the UML
system specification. Less intelligent emulators, that is, dummies and stubs,
may be derived directly from the test specification.
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TestBorrowRemAvailinteraction TestBorrowRemoteItemAvailable {1/1}sd

Mock_remote:Libraryhome:Library
<<SUT>>

tl:TLibrarian
<<TestComponent>>

tb:TBorrower
<<TestComponent>>

return pass; return pass;

search(availableItem)
search(availableItem)

availableNow(availableItem)
availableNow(availableItem)

item(availableItem)
availableNow(availableItem)

item(availableItem)
item(availableItem)

fetch(availableItem)fetch(availableItem)

Fig. 5.3. Test case TestBorrowRemoteItemAvailable

The LibraryIntegrationTestContext class (Figure 5.1) includes the two test
cases TestBorrowRemoteItemAvailable and TestBorrowRemoteItemNotAvailable.
The test behaviors of these test cases are described by the sequence diagrams
shown in Figures 5.3 and 5.4. A comparison with Figure 3.10 explains the
source of both test behaviors. They describe two possible scenarios when try-
ing to borrow an item remotely. Thus, they are an adaptation of behaviors
defined in the UML system specification of the library.

The example test cases show the possibility of deriving tests for component
and integration level testing from UML system and component specifications.
Such test cases focus on testing the functionality of the system, but not on

TestBorrowRemNotAvailinteraction TestBorrowRemoteItemNotAvailable {1/1}sd

Mock_remote:Libraryhome:Library
<<SUT>>

tb:TLibrarian
<<TestComponent>>

tb:TBorrower
<<TestComponent>>

return pass; return pass;

search(unavailableItem) search(unavailableItem)

locallyUnavailable(unavailableItem)
locallyUnavailable(unavailableItem)

remotelyUnavailable(unavailableItem)

Fig. 5.4. Test case TestBorrowRemoteItemNotAvailable
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complex communication patterns among components or potential bottlenecks.
Therefore, it is advisable to also develop integration test cases that go beyond
the behavior described in the system specification.

5.4 Chapter Summary

In this chapter, we introduced the UTP concepts of test components and test
configuration. Furthermore, we explained the main principles of component
and integration level testing and described how the UTP supports this kind
of testing. The main peculiarity of component and integration level testing
is the need of emulators to simulate missing functionality during the testing
process. Emulators should be modeled as UML utilities and may be generated
automatically from UML models. Test cases for component and integration
level testing may be derived from functional requirements in the form of UML
diagrams. Additionally defined test cases should also be provided and should
focus on implementation aspects of the SUT.
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System and Acceptance Level Testing

The goal of system level testing is to verify that the system under test conforms
to its requirements. Acceptance testing is basically an extension of system test-
ing in which requirements and the test cases associated with validating them
are developed by or with the customer(s) and are considered to be contractual
descriptions of the required system behavior. In doing both system and accep-
tance testing, we would like to produce a set of tests that exhaustively check all
of the normal and exceptional behaviors of the system, which are specified by
complete and correct requirements. Completeness means that we are satisfied
that sufficient aspects of our system behavior have been specified. Correct-
ness means that there are no ambiguities, errors, or inconsistencies within
the requirements specification. If the system under test passes all of the tests
derived from the requirements, then we have a high degree of confidence that
the system fulfills its requirements.

In most real-world systems, we are faced with the challenge that the re-
quirements cover an extremely large or even infinite set of possible behaviors,
which cannot be tested due to time and funding constraints. Therefore, we
typically define criteria that guide us in determining what and how many
tests are needed to achieve adequate testing (e.g., coverage criteria, software
reliability criteria [18, 19]).

Another issue is that requirements are often incomplete and change during
the system life cycle. Incompleteness is often a result of under-specification
(e.g., the requirements may not cover all possible exceptional cases). In or-
der to cope with such problems, we have to ensure the consistency between
requirements and tests (e.g., by automatic consistency checks) and conduct
other types of testing throughout the system life cycle (e.g., field testing and
regression testing). Testing is essentially a sampling problem, and we are try-
ing to find the most efficient sample of behaviors that will validate that the
system satisfies its requirements.

To help with completeness, correctness, and consistency in our methodol-
ogy, we promote the notion of constructing UML specifications to represent
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the requirements wherever this is possible.1 This leads toward a more pre-
cise understanding of the system and of what is meant by the requirements.
Following this approach, we can obtain a number of benefits:

• The use of graphical specification techniques makes it easier to communi-
cate about the requirements, thereby improving their validation.

• The action of constructing rigorous requirements forces the user to think
about a more comprehensive set of possible system behaviors leading to a
more complete requirements specification.

• More rigorous requirement models allow the early introduction of testing,
that is, automated analysis tools that can discover errors and ambiguities
within the specification. Furthermore, simulation tools that enable the
requirements to be executed may provide feedback during the requirements
construction.

• Parts of the requirements can be reused during the construction of test
specifications, thereby ensuring better consistency between tests and re-
quirements.

The precision and completeness of the requirements directly affect the ef-
fectiveness of the test cases derived from the requirements. Thus, developing
precise and complete requirements is a necessity for good system and accep-
tance level testing.

6.1 UTP and System Level Testing

The basis of our methodology for applying the UML Testing Profile (UTP)
to system level testing is to reuse existing UML specifications representing
requirements on the overall system. These may include

• use cases produced to capture the main functions of the system,
• activity diagrams describing workflow or business processes,
• class and object diagrams specifying the domain model or the system struc-

ture,
• interactions describing the communication among the different objects,

and
• state machines defining the dynamic behavior of objects.

Since the use of activity diagrams, class diagrams, and state machines for
testing is discussed in Chapters 4 and 5, and the use of these diagrams for
system level testing is comparable to their use for component and integration
level testing, we will concentrate in this section on use case diagrams and
interactions. In our methodology, interactions are seen as concretizations and
formalizations of use cases.
1 Some requirements may not be describable with UML such as robustness require-

ments. Such requirements have to be specified by means of other notations or
languages.
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6.1.1 Use Cases

Use cases are specifications that describe the functional capabilities of the
system and their relation to the stakeholders. In UML, use cases are diagram-
matic only. The standard provides no guidance for capturing the content of
use cases in a formal or textual form. In spite of this, use cases can serve as
a valuable basis for identifying the test cases that cover the expected user
capabilities. Figure 3.1 shows a use case diagram for the Library example.
Figure 3.6 provides a textual description of the BorrowItem use case. In the
following examples, the BorrowItem use case will be utilized to discuss the
derivation of system level test cases.

�Tip 4 Use case adequacy
The better the use case, the better the test coverage achieved. So it is good prac-
tice to ensure that use cases cover all involved system actors, preconditions,
as well as cover both normal and exceptional situations.

The textual description in Figure 3.6 highlights the specific aspects of
the behavior associated with the use case. It lists the actors, names, and the
preconditions and divides the behavior into normal and exceptional cases.
The normal and the exceptional cases may have variants and alternatives.
Figure 3.6 includes some variants for the normal cases of the BorrowItem
use case. For example, the items 2.3.1 and 2.3.2 describe variants for the
interaction with a remote library, if a book is not locally available.

Test artifacts derived from use cases

The use cases and the corresponding textual descriptions identify the main
system level test cases and provide a natural tree-like structure of the test
context for system level testing. For our Library example, this structure is
shown in Figure 6.1. The root of the tree is the test context itself.

�Tip 5 Testing scope
The use case sets the scope for the UTP test context. The use case subject
typically represents the system under test and the actors represent the test
components.

The nodes and the leaves represent test cases. The tree nodes divide test
cases into groups and subgroups. The test case descriptions related to the
nodes may call the test case descriptions of the lower levels.

For example, for a complete test of the BorrowItem use case, the test
case TC_BorrowItem (see Figure 6.1) must call the test cases that test the
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normal and the exceptional behavior, that is, TC_BorrowItem_Normal and
TC_BorrowItem_Exceptional. The leaves of tree structure are test cases that
represent flows of control in the use case descriptions. For example, the test
case TestBorrowLocallyAvailable in Figure 6.1 may test the flow of control
described by the line numbers 1 and 1.1 in Figure 3.6.

UTP Methodology Rule 6 Use cases to tests
Use cases can provide a natural tree-like structure for the system level test
context; where nodes and leaves in the structure represent test cases. The
paths through the tree represent the control flow for the test context. Hence,
the recommended process flow for deriving tests from system requirements is

1. Develop adequate use cases
2. Determine the UTP test context from use cases
3. Formalize use cases using interactions
4. Map interactions to UTP test specifications

The structure of a test context obtained by use case analysis can be rep-
resented by using Testing Profile means. As shown in Figure 6.2, the test
cases for the system level test of our library example are contained in the test

Fig. 6.1. Tree-like structure of the test context
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<<TestContext>>

LibrarySystemTestContext
theItem: Item
dp:ItemPool

TC_Reminder () : Verdict
TestBorrowLocallyAvailable ( Param1 : Item) : Verdict
DataDrivenTestCase () : Verdict
TestBorrowLocallyAvailableLater () : Verdict
TestBulkItemSearch(P1 : ItemPool, P2 : Integer) : Verdict

Fig. 6.2. Test suite structure based on use cases

context LibraryTestContext. This test context acts as a root for our hierar-
chical test structure. The test cases listed in the test context include both
the test cases shown in Figure 6.1 and other test cases not present in that
diagram.

Test artifacts derived from interactions

We now discuss how to derive UTP test artifacts from interactions that
describe the system being tested. This is a detailed expansion of step 4 from
Methodology Rule 6.

UTP Methodology Rule 7 Interactions to UTP test specification
The following five steps are useful for developing test cases from interactions:

1. Determine the test architecture and test components. This includes the
test context and key system under test classes which are imported into the
architecture.

2. Select a scenario from the use case to realize. A scenario is a specific path
through the use case.

3. Explore the interactions defined for the selected scenario.
4. Use the test components to derive a test interaction for the required sce-

nario. This is done by replacing key instances in the interactions from step
3 with test components. Test components are classifiers used to derive the
test cases. The test component instances provide stimuli for the system
under test and receive observations from the system.

5. Apply timers and verdicts to the test interaction. Verdicts are based on the
observations of the test components. The collective verdicts from all test
components involved in a test case will together form the overall verdict
of the test case. Define default behaviors for the test cases.
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Step 1 and Step 2. We select the BorrowItem use case as the basis for
our example test case derivation. This use case is illustrated in Figures 3.5
and 3.6, and the library system forms one part of the test context. As actors
for this use, case we choose a librarian and a borrower. These will define the
test components. Since not much more than the concept name of the librarian
and the borrower is known from the Library model, we must add properties of
these concepts in our test specification. We must define how they will stimulate
the library system and how they will judge the observations.

The package containing the test context for our library example is given in
Figure 6.3. The package imports the Library model representing the system
under test. In Figure 6.3, we show only two classes from the Library conceptual
model. We use specialization to extend Librarian and Borrower such that parts
of those types can serve in the test configuration. The test configuration is
shown as a UML composite structure diagram depicting the internal structure
of the test context, called LibraryTestContext in this case. Since we may also
want to acquire books from remote libraries, we show two Library objects–one
home library and one remote library. They are both objects of the same type.

Step 3. From the behavioral descriptions shown in Figures 3.7, 3.8, 3.9,
and 3.10, we can now derive functional test cases in a fairly easy manner. In
doing so, we have the choice of either (i) modifying the interaction diagrams by
identifying the objects of the test architecture and adding data and exception
handling information, as well as the verdict assessment, or (ii) merely refer to
the given utilities in the new definitions of the test cases.

Library System Test package LibrarySystemTest {1/2}

<<TestContext>>

LibrarySystemTestContext
theItem: Item
dp:ItemPool

TC_Reminder () : Verdict
TestBorrowLocallyAvailable ( Param1 : Item) : Verdict
DataDrivenTestCase () : Verdict
TestBorrowLocallyAvailableLater () : Verdict
TestBulkItemSearch(P1 : ItemPool, P2 : Integer) : Verdict

<<TestComponent>>

TBorrower

::LibrarySystem::Borrower

<<TestComponent>>

TLibrarian

::LibrarySystem::Librarian::LibrarySystem::LibraryContext

LibraryTestContext <<TestContext>>class 
LibrarySystemTestContext : LibraryContext

{1/1}

<<TestComponent>>

tb:TBorrower

<<TestComponent>>

tl:TLibrarian

<<SUT>>

home:Library
<<SUT>>

remote:Library

// coding "lossy communication"

<<DataPool>>

dp : ItemPool

Fig. 6.3. Library Test architecture
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Step 4. For the system level test of our library example, both choices will
result in test case descriptions like the one shown in Figure 6.4. This test case
checks the part of the borrowing an item use case, where the item is available
in the home library. We have not yet formally defined the data partitions, so
we only informally state that our value of theItem is such that it is available
locally at the home library. Following the TestBorrowLocallyAvailable inter-
action, such a situation should lead to the continuation ItemBorrowed where
both the borrower and the librarian will issue a pass verdict. Thus, the test
case verdict will be pass.

Figure 6.4 also illustrates the use of timers, with all actions related to
timers occurring on the TBorrower instance. Reading from the top, the first
action appears as an hourglass and starts timer T1. At the time T1 is started,
an expiration time will be given to the timer. Should the timer not be stopped
prior to the expiration time, a timeout action will occur. This is handled in
the default in Figure 6.5 and will result in a verdict of fail. Timer T2 works
in a similar manner.

TestBorrowLocallyAvailableinteraction TestBorrowLocallyAvailable {1/4}sd

home:Library
<<SUT>>

tl:TLibrarian
<<TestComponent>>

tb:TBorrower
<<TestComponent>>

T1()

T1()

T2()

T2()

return pass; return pass;

search(theItem) /* Type=Book,Authors="Baker",Title="Testing with UML 2.0",ISBN=1234) */

availableNow(theItem)

ref
Authenticate

fetch(theItem) fetch(theItem)

fetch(theItem)

fetch(theItem)

ItemBorrowed

Fig. 6.4. Test Case for borrowing locally available items
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TestBLA_Dinteraction
TestBorrowLocAvail_Default_availablenow

{1/1}sd

self

alt

return inconclusive;

return fail;

return fail;

availableNow(Item) /* '*' */

T1()

 /* '*' */

// determAlt

// any value of Item parameter

// any value of Item parameter

Fig. 6.5. Default behavior on TBorrower instance if the item is not available now

�UTP Concept 8 Timer and timezone
Timers are mechanisms that generate a timeout event when a specified time
interval has expired relative to a given instant (usually the instant when the
timer is started). Timers belong to test components. A timezone is a group-
ing mechanism for test components. Each test component belongs to a given
timezone. Test components in the same timezone have the same time.

Step 5. Defaults provide a way to respond to messages that are not explic-
itly modeled in a behavioral diagram. At the messages availablenow(theItem)
and Item(theItem), event specific defaults are attached to the TBorrower in-
stance. These defaults are called TestBorrowLocallyAvailable_Default_ avail-
ablenow and TestBorrowLocallyAvailable_Default_Item. The behavior of the
defaults is shown in Figures 6.5 and 6.6. In these default diagrams, we applied
the UTP-specific operator determAlt to describe the alternatives. By this, we
are able to define the order in which the alternatives are considered which
makes it possible to use generic terms like any message symbol, denoted by
an asterisk.

�UTP Concept 9 Default
Defaults provide a mechanism for specifying how to respond to the receipt of
messages that are not explicitly modeled in the specification. They are typically
used for exception handling and can be applied at many levels of modeling
within the profile.
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Figure 6.5 shows the default behavior when message availablenow(theItem)
is not sent to TBorrower. There, three alternative behaviors are specified. In
the first alternative, TBorrower gets the correct message, but with another
parameter than theItem. In this case, the test result becomes inconclusive. In
the second alternative, the timer T1, which is started in the test case, times
out before the expected event availablenow(theItem) comes. In this case, the
verdict is set to fail. In the last case, any unexpected message is caught and
the test result concludes to fail.

Figure 6.6 shows the default behavior specific to the Item(theItem) on
TBorrower instance. Again, three alternative behaviors are specified. In the
first alternative, the verdict is set to inconclusive when the correct mes-
sage with wrong parameter is sent to TBorrower. In the second and third
alternatives, the verdict is set to fail when the timer T2 times out and
when any kind of unexpected message other than Item(theItem) is sent to
TBorrower.

A second test case example is shown in Figure 6.7. It is a slightly more
elaborated scheme where the assumption is that theItem will be available at
the home library later. The test case shows the test situation leading to a pass
from both TBorrower and TLibrarian.

The default behavior is attached to message availablelater(theItem) on
the TBorrower instance, illustrated in Figure 6.8. This default catches the
availablelater message with any kind of parameter other than theItem and
sets the verdict to inconclusive. In the other cases, such as when the timer T1
times out or an unknown message is sent to TBorrower, the verdict is set to
fail.

TBLA_Default_iteminteraction TestBorrowLocAvail_Default_item {1/1}sd

self

alt

return inconclusive;

return fail;

return fail;

item(Item) /* any value Item '*' */

T2()

/*  '*'  */

// determAlt

Fig. 6.6. Default behavior on TBorrower instance if the correct item is not fetched
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TBLALaterinteraction TestBorrowLocallyAvailableLater {1/1}sd

tb:TBorrower
<<TestComponent>>

home:Library
<<SUT>>

tl:TLibrarian
<<TestComponent>>

return pass;

T1()

T1()

return pass;

search(theItem)

availableLater(theItem)
// default

TestBorrowLocally
AvailLater_
def_av_later

ref
Authenticate

reserve(theItem) reserve(theItem)

Item available later

Fig. 6.7. Test case for borrowing items that will be available later at the home
library

TBLAL_def_avlatinteraction
TestBorrowLocAvailLater_def_av_later

{1/1}sd

self

seq

return inconclusive;

return inconclusive;

return fail;

availableLater(Item) /* '*' */

T1()

/* '*' */

// any value of Item parameter

Fig. 6.8. Default behavior on TBorrower instance
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6.2 Chapter Summary

Because the goal of system level testing is to ensure that the system func-
tionality meets the requirements of the stakeholders, it is very important to
have the test team involved during the creation of the requirements to ensure
that they are consistent and testable. To this end, the use of UML modeling
provides a means for the development of more precise requirements that can
be reused during the development of functional tests. Where different UML
diagrams captured different perspectives of the system, careful consideration
must be given to those aspects that are important for the determination of
functional tests, such as the adequate specification of system interfaces that
will be used when testing the system.

Having developed a UML requirements model, we described the derivation
of functional tests. We then discussed the importance of coverage, as part of
the strategy to ensure adequate testing.

Using the library example, we showed how use case diagrams and interac-
tion diagrams are good for requirements capture and serve as a basis to derive
test context, test architectures, test behavior, and test cases. We discussed the
use of the UTP as a means of specifying a precise functional test specification,
illustrating a range of UML diagrams during its development.



Part III

Advanced Testing Concerns



Overview

Advanced testing concepts, including data-driven testing, real-time testing,
and performance testing, are discussed in this section.

First, we consider data-driven testing, where the data values used as in-
put to the system under test are the central concern when designing a test
case. Data-driven test approaches are important for GUI testing, application
testing, white-box testing, and the like. The test data determined by a sys-
tematic analysis of the input and output domains of the element being tested
(e.g., the whole system, the user interface). The data used in testing needs
to reflect both the important value ranges within the input and the semantic
relationships between input and output data. This requires several levels of
test data specification, including the precise specification of concrete values,
the specification of possible value ranges, and the logical characterization of
data. The UTP offers a variety of flexible concepts that support these types
of data specification.

In addition to the functional testing discussed in Part II, nonfunctional re-
quirements need to be tested. According to [3], nonfunctional testing addresses
those attributes of a component or system that do not relate to functional-
ity, which are reliability, efficiency, usability, maintainability, and portability.
In this section, we focus on efficiency, which includes real-time and perfor-
mance testing. Often, real-time and performance tests are performed once the
functional correctness and robustness of the SUT have been determined using
functional tests.

Real-time testing is performed to determine whether the system meets soft
or hard real-time constraints. Such constraints require that the functionality
of the system be provided within a set of time constraints. Real-time tests are
typically performed under normal load conditions.

Real-time tests define precisely when an input to the system should be
generated and when a response should be expected. The time requirements
are typically given as annotations to the system model or in form of separate
system requirements, from which the real-time tests are derived.
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Performance testing is conducted to determine how the system performs
under a particular workload. Often, aspects of system responsiveness, through-
put, error rates, and resource utilization are being considered during perfor-
mance testing. A specific form of performance tests are scalability tests. These
tests check the responsiveness of the system under increasing load up to max-
imal load conditions. Finally, stress tests are used to analyse the system func-
tionality and performance under overload situations. Often, performance, scal-
ability, and stress tests not only analyse the system responsiveness but relate
it to the resource consumption of the system and its environment. Typically,
memory usage, CPU load, network interface load, and the like are consid-
ered during those tests. In result, the system capabilities and its performance
under, near, or at operational limits are being determined.

Both real-time and performance tests need to be implemented in exe-
cutable form so that the timing performed by the test system does not in-
fluence or corrupt the time-based behavior of the SUT. This is typically de-
pendent on the execution models used to run the tests, so in this section
we concentrate on the derivation and specification of real-time and perfor-
mance tests and assume that they can be properly executed using efficient
test frameworks for real-time or performance testing.
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Data-Driven Testing

Data accounts for a very large part of system specification and implementa-
tion. Hence, data is a key consideration for test modeling and specification.
In this section, we introduce three important aspects for data-driven testing,
specifically.

• Data types and value specification
• Parameterization of tests and the definition of associated data needed for

adequate test coverage
• Encoding and decoding of data.

In doing so, we present how both UML and the UML Testing Profile
(UTP) address these key concerns. For example, UML instance specification,
together with UTP wildcards, provides a means for specifying values during
test specification, leading to more reusable and maintainable tests. Datapools,
data partitions, and data selectors provide a means of defining and using data
sets. These are crucial for achieving the needed test coverage of input and
output parameters for the system under test. Finally, we introduce the notion
of coding rules to support the variants of encoding and decoding data during
the communication of data between objects.

7.1 UTP and Data-Driven Testing

In this section, we present how the UTP can be used to support data-driven
testing.

7.1.1 Value Specification

During test modeling and test specification, testers are concerned about defin-
ing data values that are both sent to, and observed from, the system under
test. We refer to this as value specification. However, during the lifetime of
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the system, both the structure of data and the values originally defined in the
specification can change. This affects the design of test cases, and if data is
tightly coupled with behavior specifications, it can lead to a large maintenance
burden [28].

Also, during testing, we are not always concerned with checking all the data
observed from the system under test. Instead, we are often only concerned with
a subset of the data that is pertinent to the test. Hence, a means is needed of
ignoring data that is not relevant during testing. To address these concerns, we
discuss how wildcards can be used to ignore data that is not of concern during
test specification and then present a view of how UML instance specification
can aid the decoupling of value specification from behavior specification.

Wildcards

During testing, we are generally not concerned about checking all aspects of
data. Instead, we only concentrate on those data elements that are pertinent
for the test. To this end, UTP introduces the notion of wildcards as a means
of specifying “don’t care” values. In particular, UTP introduces two types of
wildcards.

�UTP Concept 10 Wildcard
A wildcard is a literal specifying one of two possibilities:

1. Any value out of a set of possible values. This is denoted using “?”
2. Either the absence of a value (in the cases of optional attributes) or any

value out of a set of possible values. This is denoted using “*”.

In Figure 7.1, we illustrate the class definition for an Item from the Library
example. When we develop test specifications, referring to Item Objects, we

Item
Type:ItemTypes
Authors:String[1 .. *]
Title:String
ISBN:String
PublishedDate: Date
-available: Boolean
-returnDate: Date

Fig. 7.1. Item Class Definition
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define instances of the Item class. Where, an instance represents a unique
entity within our Library system having a specific set of values. However,
during test specification, we are not necessarily concerned about the value of
all attributes that an Item may have. For example, we may only be concerned
in observing books from a particular author. Therefore, we are not concerned
about the title, ISBN, or the published date values of a book. To denote this,
we define instances for the Item class where both types of wildcards have been
used. In particular, ? has been used to denote that we are not concerned about
the ISBN and * has been used to denote that the Published Date can be ab-
sent or if present, is of no consequence to the test. In this case, we would use
this instance to denote a Book authored by Baker titled “Testing with UML.”
Figure 7.2 illustrates an example of the TestBorrowLocallyAvailable test case
in which we explicitly define the values for each instance Item, including
wildcards.

�Tip 6 Use of wild cards within UML expressions
UML does not prescribe an action syntax for expressions. Therefore, when
choosing a UML tool for test specification, you should consider action lan-
guages that support wildcards within expressions.

Instance specification

When defining instances of Item, we may want to define values for some, if not
all, of its attributes. This can be done in one of two ways, either (1) in-lined
or (2) using instance specification.

1. As illustrated in Figure 7.2, an in-lining approach will explicitly state
those values for each instance of Item. When we have complex or struc-
tured types within our model, this approach can be error prone, decrease
readability, as well as leading toward duplication.

2. To avoid the issues described in (1) we use instance specification. UML
instance specification allows you to define the existence of an entity within
a modeled system [25]. Using instance specification, we define separate in-
stances that can then be referenced multiple times. In doing so, it provides
a powerful mechanism for specifying values for testing in an independent
manner. This not only avoids duplication, but also enables the decoupling
of value specification from behavior specification, thereby reducing main-
tenance effort. For example, Figure 7.3 defines an instance for the Item
class where both types of wildcards have been used. In particular, ? has
been used to denote that any ISBN is valid and * has been used to de-
note that the Published Date attribute is of no consequence. In this case,
we would use this instance to denote a Book authored by Baker with
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TestLocallyAvailablewithWildcardsinteraction TestBorrowLocallyAvailable {2/4}sd

tl:TLibrarian
<<TestComponent>>

tb:TBorrower
<<TestComponent>>

home:Library
<<SUT>>

ref
Authenticate

ItemBorrowed

T1()

T1()

T2()

T2()

return pass;

theItem=GetLastReceivedItem();

return pass;

fetch(theItem)

search(Type=Book,Authors[1]= Baker,Title='Testing with UML') 

fetch(theItem)

availableNow(Type=Book,Authors='Baker",Title='Testing with UML',ISBN=?,PublishedDate=*)

fetch(theItem)

fetch(theItem)

Fig. 7.2. Example of the TestBorrowLocallyAvailable Test Case using wildcards

the title “Testing with UML.” Figure 7.4 illustrates the TestBorrowLo-
callyAvailable test case in which we reference the instance definition for
Item. In this case, it becomes more apparent that using instance specifica-
tion can increase readability and also reduce the chances for introducing
errors during the test specification process.
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BookByBaker::Item

Type = Book
Authors[1] = ‘Baker’
Title = ‘Testing with UML’
ISBN = ?
PublishedDate = *

Fig. 7.3. Example of Item Class Instance Definition

�Tip 7 Decoupling data from behavior specification
Using UML instance specification for the definition of values can both improve
efficiency of developing test specifications and also reduce the maintenance of
tests.

7.1.2 Parameterization of Tests and Data Pools

During testing, we develop test strategies, plans, and entry/exit criteria that
define what testing is needed to demonstrate the correctness of the system
under test. In doing so, test coverage criteria are defined that can be formally
tracked and measured during the testing. For black-box testing, this criteria is
usually defined in terms of the possible input and output values for the system
under test. To this end, a number of commonly defined techniques are used,
such as Boundary Value Analysis (BVA), Equivalence Class Partitioning, or
the Classification Tree Method (CTE) [31, 38]. Such techniques determine the
data values to be used to ensure some sort of coverage of the possible input
(and possibly output values) for the system under test. In doing so, tests
are repeatedly executed with different values to stimulate the system under
test in different ways. To support these types of data-driven testing, UTP
implements the concepts of data pools, data partitions, and data selectors.

�UTP Concept 11 Data pools, data partitions, and data selectors
A data pool contains a set of values or partitions that can be associated with
a particular test context and its test cases. A data partition is used to define
equivalence classes and data sets, and a data selector defines different selection
strategies for these data sets.

In Figure 7.5, we illustrate an example of the Library Test Context in
which a data pool for Items, called ItemPool, has been associated with the test
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TestLocallyAvailableInstanceSpecificationinteraction TestBorrowLocallyAvailable {3/4}sd

home:Library
<<SUT>>

tb:TBorrower
<<TestComponent>>

tl:TLibrarian
<<TestComponent>>

return pass;

T1()

T1()

T2()

T2()

return pass;

ref
Authenticate

ItemBorrowed

availableNow(BookByBaker)

fetch(theItem)

fetch(theItem)

fetch(theItem)

fetch(theItem)

search(Type=Book,Authors[1]= Baker,Title='Testing with UML')

theItem=GetLastReceivedItem();

Fig. 7.4. Example of the TestBorrowLocallyAvailable Test Case using instance
specification

context. This data pool contains two equivalence partitions for Item values:
(1) valid Items that are contained within the Library system and (2) items
that are not available from the Library system we are testing—see Figure 7.6.
In addition, we defined subpartitions for DVD’s, Books, and CDs. Figure 7.7
illustrates some example entries for such a data pool. In this example, we are
defining entries for these two partitions such that the type of Items and type
of Titles are both different.
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LibraryTestContext <<TestContext>>class 
LibrarySystemTestContext

{1/1}

<<TestComponent>>

tb:TBorrower

<<TestComponent>>

tl:TLibrarian

<<SUT>>

home:Library
<<SUT>>

remote:Library

// coding "lossy communication"

<<DataPool>>

dp : ItemPool

Fig. 7.5. Example of the Library Test Context with a data pool

DataPool package LibrarySystemTest {2/2}

<<DataPool>>

ItemPool

<<DataPartition>>

ItemPartition
itm:Item[*]

selectItem():Item

valid1 invalid1

subpartition*

<<DataPartition>>

BookPartition

<<DataPartition>>

CDPartition

<<DataPartition>>

DVDPartition

Fig. 7.6. Example data pool definition for valid and invalid Item partitions
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1 Jan 200522347“Profiling with UML”“Henry”CD

1 Jan 200522346“Testing is good”“Jones”Book

1 Jan 200522345“Modeling is best”“Smith”DVDInvalid

1 Jan 200512347“Profiles are cool”“Henry”DVD

1 Jan 200512346“Testing is great”“Jones”CD

1 Jan 200512345“UML is best”“Smith”BookValid

Published
Date

ISBNTitleAuthorsTypePartition 
Type

Fig. 7.7. Example Item entries for the datapool

In addition to defining the types contained within our data pool, we defined
a data selector operation SelectItem for each data partition. This operation
returns an instance of an Item. Consequently, it is referenced by test cases to
select items from either valid or invalid partitions as needed.

To support data-driven testing, we can use values obtained from data pools
as input parameters for test cases. Figure 7.8 demonstrates using an interac-
tion overview diagram to provide a data-driven test case that references two
instances of the TestBorrowLocallyAvailable test case using values from the
data pool: the first reference using a valid value from the valid data partition
and the second an invalid value from the invalid data partition.

ref

Interaction overview diagram1 activity DataDrivenTestCase {1/1}

TestBorrowLocallyAvailableLater(dp.valid.selectItem())

ref

TestBorrowLocallyAvailableLater(dp.invalid.selectItem())

Fig. 7.8. Example test cases using a data pool
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7.1.3 Encoding and Decoding of Data

UTP allows coding rules to be defined that specify how values are encoded and
decoded when communicating with the SUT. During test specification these
coding rules can be used to introduce specific coding schemes that might be
useful when testing the system, such as lossy communication channels. For
example, Figure 7.5 illustrates a coding rule in which we specify that books
transferred between the local and remote libraries can sometimes get lost or
stolen.

�UTP Concept 12 Coding rule
Coding rules are strings that either define how an object is encoded or decoded,
or references standards that define encoding rules e.g. ASN.1, CORBA, or
XML. They are applied to value specification to indicate how the concrete
data values should be encoded/decoded during test execution. They can also be
applied to properties and namespaces in order to cover all involved values of
the property and/or namespace at once.

7.2 Chapter Summary

Data represents a large part of system and test specification. By considering
how data is defined and used during testing you can increase the opportunity
of reuse as well as reduce future maintenance costs for subsequent releases
of the system being developed. In particular, both UTP and UML provide
mechanisms for the important concerns of (i) the decoupling of data from
behavior specification using instance specification, (ii) the underspecification
of data values through wildcards, and (iii) the parameterization of tests.
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Real-Time and Performance Testing

This section considers tests dedicated to nonfunctional system requirements
that relate to the timing of the system behavior as well as to the utilization of
system resources. Real-time and performance aspects relate to different kinds
of nonfunctional system requirements as shown in Figure 8.1.

Hereby [22], reliability is understood as the ability of a system or compo-
nent to perform its required functions under stated conditions for a specified
period of time. Usability is the ease with which a user can learn to operate,
prepare inputs for, and interpret outputs of a system or component. Efficiency
is the degree to which a system or component performs its designated func-
tions with minimum consumption of resources including CPU, memory, I/O,
peripherals, or network resources. Adaptability is the degree to which a system
or component facilitates the incorporation of changes once the nature of the
desired change has been determined. Portability refers to the ease with which

System
Requirements

Functional Non-Functional

Reliability Usability Efficiency Adaptability Portability

Real-Time Aspects Performance Aspects

Fig. 8.1. System requirements and their relation to real-time and performance
aspects
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a system or component can be transferred from one hardware or software
environment to another.

The timing of the system behavior influences in particular

• the reliability of a system by, for example, providing timely recovering
reactions to erroneous situations,

• its usability by, for example, providing timely responses to user requests,
and

• its efficiency by, for example, invoking system resources for a limited time.

Performance aspects relate by definition not only to the system efficiency
but also to the system usability as the overall system performance influences
the user interaction with the system. By that, real-time and performance-
oriented tests are special kinds of nonfunctional tests as shown in Figure 8.2.

Non-Functional 
Testing

Real-Time Testing Performance-
Oriented Testing

Testing of 
Hard Real-Time 

Constraints

Testing of 
Soft Real-Time 

Constraints

Performance
Testing Load Testing Stress Testing Scalability Testing

...

Fig. 8.2. Classification of nonfunctional tests

8.1 Real-Time Testing Concerns

Real-time tests focus on real-time systems such as embedded and/or dis-
tributed systems, which are becoming even more important in daily life. Real-
time systems are used in business and administration (e.g., e-commerce), home
use (e.g., home brokerage), teaching (e.g., tele-teaching and tele -tutoring),
and process control (e.g., air traffic control). We separate real-time tests into
tests for hard real-time constraints and for soft real-time constraints.

Hard real-time constraints have to be fulfilled by a system in any case.
Systems with hard real-time constraints are often called real-time systems.
Please note that hard real-time constraints are not about the speed of a system
but only about the fact that the time limits are met. It could be a time limit
of an hour or longer as well as a limit in the range of milli- or microseconds.
For example, if a hard real-time constraint is defined on the duration of a
request response, then a late answer indicates a failure in the system. Other
examples of real-time constraint violations that can be more severe could be
an aircraft autopilot system, where a violation of hard real-time constraints
may lead to an airplane crash. In UML Testing Profile(UTP), hard real-time
requirements can be described by time constraints.
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Soft real-time constraints need to be satisfied in average or to a certain
percentage only. In this case, a late answer is still a valid answer. An example
is video transmission where a delayed frame might be either displayed delayed
or dropped when not perceivable as long as no consecutive frames are being
affected. Although soft real-time systems are easier to implement, the speci-
fication of soft real-time requirements is more complex as they often involve
statistical expressions.

8.2 UTP and Real-Time Testing

When using the UTP for real-time testing, the test objectives and test cases
are to be derived from time-quantified system behaviors. UML differentiates
between time constraints for time intervals and duration constraints for du-
ration intervals. Both are called interval constraints. Interval constraints can
be provided

• within interaction diagrams to constrain event occurrences, message and
call durations, and action executions.

• within state machine diagrams to constrain state transitions, triggers,
states, and action executions.

• within activity diagrams to constrain event occurrences and action execu-
tions.

8.2.1 Hard Real-Time Concerns

In the interaction diagram illustrated in Figure 8.3, two hard real-time con-
straints are defined for the authentication scenario:

TimedAuthenticateinteraction Authenticate {2/2}sd

home : Libraryl : Librarianb : Borrower

libraryCardInfo(b.card)

libraryCardInfoAck(?)

checkLibraryCard(b.card)

{1..10} {0..1}

Fig. 8.3. Real-time constraints on authentication
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• whenever the Borrower b give their libraryCard to the Librarian l, they
should receive a response within 10 seconds—the response should take at
least 0.5 seconds.

• In order to provide a correct response to the authentication request, the
Librarian l passes the libraryCardInfo to the home library, which takes at
most 0.5 seconds to check the data and to provide an acknowledgment.

In Figure 8.4, a test case is illustrated for testing the two constraints given
earlier. TBorrower is invoking checkLibraryCard and starts simultaneously T1
with 10 seconds. If the call completes before T1 expires, the test is successful
and the timer is stopped, otherwise a fail is returned.

�Tip 8 Tests for hard real-time constraints
A test for a hard real-time constraint will typically look like the presented one:
the lower and upper bound of the time constraint are to be checked explicitly.
In the case of time constraints spanning over several lifelines, however, this
check needs to be coordinated between the test components being involved.

TC_Authenticateinteraction TC_Authenticate {1/1}sd

tb : TBorrower
<<TestComponent>>

l: Librarian
<<SUT>>

alt

T1()=10

T1()

return pass;

T1()

return fail;

checkLibraryCard(card)

Fig. 8.4. Example test case using real-time constraints
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In state machines, timers for triggering transitions can be used as shown
in Figure 8.5. in this example, the LoanPeriod timer is set to 30 days.1 In
the borrowed state, there is a transition to check that the item is not kept too
long by the borrower: whenever the timer LoanPeriod expires, a transition is
triggered. The transition issues a reminder message to the borrower to bring
the item back to the library within another 3 days. If the timer expires again,
this reminder is again issued. In real systems, one would use more serious
measures if the item is not returned after one or two reminders, but this is
not considered within our Library system example.

A test case addressing the correct timing behavior of the state machine
illustrated in Figure 8.5 is given in Figure 8.6. Initially, the item itm is fetched
and the timer of the TBorrower test component is set to 31 days. Whenever
a reminder is received, the test passes, otherwise it fails. One could detail
this test to check also that the reminder is not issued too early. This works
analogously to the test given in Figure 8.4.

In addition, time constraints can be used on states and transitions as in
Figure 8.7. Here, the transition to inform about the fact that an item cannot
be repaired has to be triggered within 24 hours, while a successful repair may
take 72 hours. The completion of the toBeRepaired state is indicated by the
signal repair. The two cases are differentiated by the outcomes for condition.
Either the item returns to the ok condition or it remains broken.

A test for these time constraints is given in Figure 8.8. The item for loan is
fetched and returned in a broken condition. Once it is repaired, the condition
is checked together with the time it took to repair the item. If it took too long
in either case, the verdict is set to fail.

TimeTriggers for ItemForLoan statemachine ItemForLoan :: 
ItemForLoan

{3/3}

available borrowed

 fetch(itm) [condition == ok]
 /set(LoanPeriod(),30);

LoanPeriod()
 /{output reminder(); set(LoanPeriod(),3);}

Fig. 8.5. Time triggers in state machines

1 We omit here for the sake of simplicity the handling of time units and the potential
transformation of 30 days into 720 hours or into 43,200 minutes etc.
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TC_ItemForLoan Verdict TC_ItemForLoan() {1/1}

fetch(itm)

Loaned

set(T1(),30+1);

reminder() T1()

return fail;return pass;

timer T1;

Fig. 8.6. Tests for time triggers

TimeConstraints for ItemForLoan statemachine ItemForLoan :: ItemForLoan {2/3}

toBeRepairedavailable

repaired(itm) [condition == broken]

repaired(itm) [condition == ok]

{} 72h

{} 24h

Fig. 8.7. Time constraints in state machines
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TC_ItemForLoan2 Verdict TC_ItemForLoan2() {1/1}

init

destroyed

fetch(itm.itm)/itm.condition= broken;

checkRepair

returning(itm.itm)/current= now;

repaired(itm.itm)/
{ if (itm.condition==broken && now-current>24) return fail;
  else if (itm.condition==ok && now-current>72) return fail;
  else return pass; }

Time current;

Fig. 8.8. Tests for time constraints in state machines

�Tip 9 Real-time tests with activity diagrams
Time constraints in activity diagrams are similar to timing constraints in
interaction and state machine diagrams. Timing can be given for elements
within the activity diagram and is tested by means of explicit timers and timing
control/calculations within the test case.

8.2.2 Soft Real-Time Concerns

Soft real-time constraints add a probability for the time constraints, that is,
the percentage how often the time constraint has to be met. In doing so,
constraints attached to elements that have to obey time constraints can be
used. In Figure 8.9, the LoanExpired reminder has to be issued within 24
hours in 95% of the cases.

This can be tested by repeating the functionality of the basic test case
(as described in Figure 8.2) and calculating the percentage of pass and fail
results. While the former is represented by a loop of the basic test, the latter
can be done by using an arbiter :



104 8 Real-Time and Performance Testing

Reminder activity Reminder {1/1}

Borrower

Library
CheckLoan IssueReminder

LoanExpired

else

ReturnItem

else Returned

{} 24h in 95%

Fig. 8.9. Soft time constraints in an activity diagram

�Tip 10 Tests for soft real-time constraints
Tests for soft real-time constraints require the repetition of tests so that a
representative number of test results are produced, which allow to check if the
percentage is met by a statistically representative number of samples.

�UTP Concept 13 Arbiter
An arbiter evaluates individual test results from test components and assigns
the overall verdict. The individual test results are given to the arbiter via
validation actions. An arbiter can be defined for a specific test case or a
whole test context.
There is a default arbiter based on functional, conformance testing, which
generates pass, fail, inconc, and error as verdict. The default arbiter uses the
only-get-worse rule, that is, whenever a test component has a negative result,
the overall verdict will not be better than this. To facilitate this, the default
arbiter orders the verdicts along pass < inconc < fail < error.
By providing a user-defined arbiter, this default arbitration scheme of UTP
can be redefined.

Figure 8.10 illustrates the repetitive execution of TC_Reminder test in a
loop of 1000 repetitions. After this loop, the test case returns with the overall
verdict provided by the arbiter given in Figure 8.11.

The arbiter is given in Figure 8.11. It counts the number of successful
individual tests in num_pass and of unsuccessful ones in num_fail. If the
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TC_ItemForLoan3 activity TC_ItemForLoan3 {1/1}

ref
TC_Reminder()

n=1

n<1000

n=n+1;

else/return TTDArbiter.getVerdict()

«»Integer n;

Fig. 8.10. Repetitive test execution

final verdict is requested with getVerdict, it returns with pass if the threshold
is met, otherwise it returns with fail.

The usage of the arbiter by the test case TC_Reminder is demonstrated in
Figure 8.12. The test begins with BorrowItem, then timer T1 is used to keep
the loaned item longer than the loaned period. In that case, a reminder from

arbiter statemachine TTDArbiter :: initialize {1/1}

calculate

setVerdict(v) [v == pass]
    /num_pass=num_pass+1;

setVerdict(v) [v == fail]
    /num_fail=num_fail+1;

getVerdict()
    /if (num_pass/(num_pass+num_fail)<threshold) 
    return fail; 
    else return pass;

Real threshold;
 Integer num_pass=0;
 Integer num_fail=0;
 Verdict v; /* temp */

Fig. 8.11. Arbiter for percentage calculation
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TC_Reminderinteraction TC_Reminder {1/1}sd

l:Librarian
<<SUT>>

: TBorrower
<<TestComponent>>

::TTDArbiter

alt

T1()=30

T1()

T1()

T1() = 1

ref
BorrowItem

ref
ReturnItem

reminder()

setVerdict(pass)

setVerdict(fail)

Fig. 8.12. Test contributing verdicts to the arbiter

the Librarian is expected. If that occurs, a pass verdict is given to the arbiter.
If not, that is, T1 expires, a fail is given. The test completes with ReturnItem.

8.3 Performance Testing Concerns

Different strategies can be used to study performance aspects of a system.
One consists in attempting to analyze real load of that system by monitor-
ing its behavior and to derive performance characteristics. The other method
consists of creating artificial load and to correlate it directly to the behav-
ior observed during the performance tests. The first method enables one to
study the system performance under real load conditions yielding authentic
results. The drawback is however that the system cannot be put into specific
state and situations so that the analysis of critical and unexpected situations
depend on the current load which is outside the control of the tester. The
second method allows to execute more precise measurements since the con-
ditions of an experiment are fully known and controllable and correlations
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with observed performance are less fuzzy than with real load. Both methods
are actually useful and complementary. A testing cycle should involve both
methods: new behaviors are explored with real load and their understand-
ing is further refined with the help of the second method by attempting to
reproduce them artificially and to test them.

Performance-oriented tests cover basic performance tests, which are con-
ducted to evaluate the compliance of a system with specified performance re-
quirements. Performance requirements are stated in terms of delays,
throughputs, etc., along which the system must accomplish some function-
ality, potentially combined with a resource utilization threshold that should
not be violated.

There are variations to basic performance tests such as load tests where
the SUT is put under specific load situations. For example, in transaction-
oriented systems, load tests comprise submitting transactions to the systems
at varying rates, which mimic the simultaneous use of the SUT by concurrent
users.

Stress tests are a specific form of load tests, where the SUT is put under
high load maximal load, and overload situations. Typical questions of stress
tests are if the system keeps its functionality under high and maximum load. It
also investigates if the system copes smoothly with overload situations. Stress
testing is a determination of how the system behaves when pushed “over the
edge,” including how well it recovers from being pushed in some manner to
discover different types of problems, for example,

• Bottlenecks: A bottleneck is the generic term, in hardware or software,
for an area in system operation where the flow of data is constrained and
causes everything else to slow down.

• Transactional problems: Transactional processing is another generic term
that encompassed a broad spectrum of things. Generally, transactional
processing involves some kind of detailed interchange of information be-
tween the site and its user, and often involves something that is processed
in several distributed steps on the backend.

• Hardware limitations: Sometimes the hardware you have just is not enough
to support the work you need to do. Even with all the optimizations and
smart coding you can cram into the box, you may simply need bigger iron.

Finally, scalability tests are performance tests where the SUT is put under
increasing load in order to identify, for example, the maximum load for a
system or the point of system degradation if the system is too much loaded.

Performance tests encompass test components that generate load to the
SUT. For that, often background and foreground load is differentiated.

A performance test configuration consists of several distributed foreground
and background test components. Often, a scheduler is used to coordinate the
test components. A Foreground Test Component (FT) realizes the functional
interaction with the SUT. It influences the SUT directly by sending and re-
ceiving messages, invoking operations, initiating transactions, and alike. That
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form of discrete interaction of the foreground tester with the SUT is concep-
tually the same interaction of test and system components that is used in
functional testing on component, integration, and system level (see Sections 6
and 7). The discrete interaction brings the SUT into specific states, from which
the performance measurements are executed. Once the SUT is in a state that is
under consideration for performance testing, the foreground tester uses a form
of continuous interaction with the SUT. It sends a rather continuous stream
of functional interactions to the SUT in order to emulate the foreground load
for the SUT. The foreground load is also called foreground traffic.

A background test component BT generates continuous streams of data to
cause additional load to the SUT by loading the platform on or the network in
which the SUT resides. A background tester does not directly communicate
with the SUT. It only implicitly influences the SUT as it brings the SUT
into various normal, maximum, or overload situations. Background traffic is

Component 
Performance Test

Component 
Load Test

SUT
FT

FT

System Performance Test
(one FT serving both 

system interfaces)

System Performance Test
(one FT per system interface)

FT

CUT

FT

LM

FT

CUT

FT

FT

FT

FT

FT

FT

FT

LM
BTBTBT

SUT

FT

LM

SUT

FT

LMBTBTBT

FT
FT

FT

System
Load Test

SUT

LMBTBTBT

FT

FT

FT

FT

FT

FT

FT

FT

System
Load Test

LM

System

Components

System

Fig. 8.13. Performance test configurations
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typically described by traffic models which are often created by dedicated load
generators.

Along performance tests, a load monitor (LM), also called a resource mon-
itor, helps to relate the system performance to the system load.

In Figure 8.13, an example system consisting of four components is shown.
Two of those four components have interfaces to the system environment. This
system can be either performance tested as a whole or individually tested for
the component performance. Typically, a performance test for a Component
Under Test (CUT) or SUT uses foreground testers (FT) only. For load tests,
background test components (BT) are used in addition. An LM should be used
in all cases to analyze the specific load conditions under which a performance
test has been executed.

Along the performance and load tests, measurements are taken in order to
derive performance characteristics. A measurement is based on the collection
of time stamps of events.

8.4 UTP and Performance Testing

A performance test suite has to offer features to start and cancel both back-
ground and foreground test components to interact with the CUT or SUT.
In doing so, the generated load can be controlled and the performance char-
acteristics can be derived by accessing time stamps of events. At the end of
each performance test, a test verdict should be assigned. However, the verdict
of a performance test should not only evaluate the observed behavior and
performance of the tested component or system to be correct or not (i.e., by
assigning pass or fail, respectively) but also return the measured performance
characteristics that are of importance for the analysis of the test results.

For the library system, we define a performance test to check how many
users can simultaneously search for an item. As this is the primary behav-
ior, we place it as a foreground test component and do not use additional
background test components Figure 8.14.

In this test case, we use an item pool that is passed into the test case as a
parameter. We use a second parameter for the number of searches for an item.
In a loop with a parallel fragment par, these searches are started together with
a timer. Whenever a response to this search (availableNow, availableLater, or
locallyUnavailable) is received, the timer is stopped and a pass together with
the passed time is sent to the arbiter, otherwise a fail is sent to the arbiter.

Behind the scene, a scheduler is coordinating the overall execution of this
and all other test cases.

A scheduler is typically provided by the UTP tool environment. Still, a
user-defined scheduler can be provided to apply other scheduling mechanisms.
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TestBulkItemSearchinteraction TestBulkItemSearch {1/1}sd

::TTDArbiterhome : Library
<<SUT>>

tb : TBorrower
<<TestComponent>>

alt

alt

par

loop(1,P2)

T1()=10

T1()

T1()

theItem = P1.next();

search(theItem)

locallyUnavailable(theItem)

availableNow(theItem)

availableLater(theItem)

setVerdict(pass) /*  T1.read */

setVerdict(fail)

Fig. 8.14. Performance test for bulk item search

�UTP Concept 14 Scheduler
A scheduler is used to control the execution of the different test components.
The scheduler keeps information about which test components exist at any
point in time and collaborates with the arbiter to inform it when the final
verdict is required. It keeps control over the creation and destruction of test
components and knows which test components take part in each test case.
The scheduler is a property of test component.

8.5 Summary

Real-time and performance aspects are central nonfunctional requirements
for a system. By extending functional tests with timing considerations, they
can be transformed into real-time tests. Similarly for performance tests, you
use foreground test components with dedicated timing considerations and
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background test components for additional load on the system and analyze
the system reactions under normal, increasing, maximum, and overload situa-
tions. A key element of real-time and performance tests is to identify ways of
deriving real-time and performance characteristics of interest by identifying
those events of the system to be observed and measured in real-time. Beyond
this, due to the statistical nature of real-time and performance behavior, such
tests should be repeated several times so as to derive test results within some
confidence interval.



Part IV

Applications of UTP



Overview

In this section, we explore the application of the UTP to two specific applica-
tion areas: user interface(UI) testing and service-oriented architecture(SOA)
testing. The area of UI was selected because of its ubiquity in modern comput-
ing systems. The service-oriented architecture area was selected as it is rapidly
emerging as the architectural basis on which the next generation of comput-
ing platforms will be constructed. Taken together, the lessons illustrated in
the next two chapters provide a sound foundation for test specification within
these two very important areas.

The importance of (UI) testing is not hard to understand. The UI is the
point where the system stakeholders interact with the system, and the quality
of this experience is fundamental to the system being perceived favorably.
As modern frameworks for UI construction have become prevalent, ensuring
the basic behavior of UI "widgets” has become less important than ensuring
that the stateful behavior of the UI is correctly implemented, and that the
flow across UI elements behaves correctly. In Chapter 9, we provide a careful
exploration of these and other issues related to UI testing.

As noted above, (SOA) is an emerging and very promising approach to
building the next generation of enterprises and the computing platforms that
support them. SOA itself comprises much more than information technology
(although the term is often misused as a synonym for web services-based
computing approaches). The technology challenges associated with adopting
a SOA approach to business are significant, particularly those associated with
enabling/connecting the enterprise using web services. Chapter 10 provides a
brief introduction to SOA and the technology needs that it raises. It will then
focus on web services as key enablers for meeting those needs. Particular at-
tention is paid to the interplay between the UTP and the variety of standards
(WSDL, WS-BPEL, etc.) used to build modern web service-based systems.
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User-Interface Testing

Testing systems that include user interfaces (UTs) can be challenging. This
remains true for most types of test objectives whether it be verifying that
a UI meets its requirements or checking that a user interface meets key
nonfunctional metrics, for example, usability and performance [37, 41]. To this
end, we discuss some of the issues that are encountered during user-interface
testing and how the UTP can be used to address some of these concerns.

9.1 Issues in User-Interface Testing

Most systems include at least one UI. Yet testing systems with these inter-
faces remains a challenge for test automation. A UI can encompass many
different forms of media, for example physical (i.e., buttons/switches), graph-
ical interfaces, speech, audio, biometrics. This variation introduces a number
of issues. For example, the level of abstraction that is used to control and ob-
serve a graphical UI will depend on the level of integration between the test
system and the application and/or underlying graphics system. If no integra-
tion is provided, then test control and observation are based on the rendered
inputs and outputs of the system, for example, captured images of the graph-
ical interface. However, if some integration is provided, then test control and
observation can be abstracted away from rendered images, thereby improv-
ing the resilience of tests and reducing test maintenance. For example, if the
requirements for the rendered graphical interface are modified and if no ab-
stract integration is provided for control and observation, then tests will have
to be updated accordingly. Therefore, understanding the level of abstraction
for specifying both requirements and tests is very important. In addition to
abstraction, there are other issues that affect UI testing. For example, we
may implement a system that supports different localization options, such as
different languages.

Another consideration when testing UIs is the verification of nonfunctional
requirements, such as usability and performance. For example, we may want
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�Tip 11 User-interface abstraction can reduce test maintenance
Abstracting the way in which user interfaces can be controlled and observed
can improve the resilience of test specifications as well as reduce the effort
required for test specification maintenance.

to enforce specific usability design principles, such as “when the user presses
the ‘exit’ key they always return to the previous screen,” or measure the time
the system takes in responding to a user request. Unfortunately, these aspects
are often overlooked when system requirements are defined.

9.2 Planning UI Test Activities

In this section, we describe how we can approach test specification in a manner
that attempts to address some of the issues presented above. For our exam-
ple, we do this by defining a conceptual framework for test specification that
separates the various concerns relating to UI testing to minimize the impact
of changes and maintenance for test specification—see Figure 9.1.

In the following sections, we describe the different aspects illustrated in
Figure 9.1.

User Interface Context

Functional
Tests

Performance
Tests

Usability 
Tests

Localization
Aspects

Physical
Aspects

UI Test Model

Non-Functional Aspects
Logical Aspects

System Under Test

Fig. 9.1. Example of how different concerns can be separated during user-interface
test specification
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9.2.1 User Interface Context

The UI context defines the abstraction level at which user-interface tests are
specified. Ideally, the UI context will hide the following characteristics of a
user interface:

• UI aspects that only need to be tested once for a complete product line.
For example, testing how a graphics framework renders an image does
not need to be retested for each release of an application that uses that
framework.

• Physical UI interaction media, for example, voice, audio, graphical inter-
faces, buttons. In this case, we want to hide aspects that do not influence
the core functionality to be tested.

• Localization aspects of a UI. For example, many localization settings for
UIs can be treated as key UI parameters.

Hiding such aspects can provide an abstraction for UI tests tending toward
resilience and reduced maintenance. In doing so, the UI context is responsible
for adapting stimulus and observations from logical tests, using UI contextual
information (e.g., physical interaction media and localization aspects), with
the system under test (SUT). For example, a stimulus from a test would be
translated into a form that can be used to control the SUT. Likewise, obser-
vations from the SUT would be interpreted and abstracted using contextual
information. The level of abstraction needed to facilitate this type of modeling
can be implemented using test agents that interact with the tested application
as an integral part of the SUT. It also assumes that lower layers in the trans-
lation of control and stimulus can be verified for correctness independently.

9.2.2 Logical Aspects

Here, the intention is to specify tests in a manner that is independent of
changes that are likely to occur in the UI environment for a particular product
line.

9.2.3 Physical Aspects

In this case, we can define how stimulus and observations are mapped to
and from the defined physical interface for the SUT, such as presentation,
modality, presentation.

9.2.4 Localization Aspects

In this case, we define how localization variations can be mapped to and from
a generic form used by logical test cases. For example, variations such as
languages could be mapped to and from “English” as a generic form for test
cases.
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9.3 UTP and User-Interface Testing

In this section, we present how UTP can be used to define tests for our Li-
brary system based on the framework presented in Section 9.1. We choose
the BorrowItem scenario from the Library model in which a user (borrower)
wishes to borrow a book from the local library. The user interacts with the
local Library web-based system to search for a book, which then informs the
user if the book is available or not.

Our library system has a number of UI contextual options that impact
testing. The first is that a user can interact with the library system using
either text entry or via speech commands, where text and speech cannot
be mixed during one session. The second aspect is that the system can be
deployed with two different localization options: English and German language
support. To this end, we extend our Library model to reflect these possible
user interactions. Figure 9.2 illustrates new signals for both spoken and text
interactions. Each of these signals can be parameterized with either English
or German language prompts/commands.

9.3.1 Test Context and Configuration

In Figure 9.3, we define a test configuration, containing two test components
that distinguish between the Borrower and the UI context. In doing so, the UI
context test component provides an abstraction for UI tests enabling them to

Library User Interface Classes package LibrarySystem {5/5}

<<signal>>

SpokenPrompt
Prompt:UIPromptTypes
item:Item

<<signal>>

TextPrompt
Prompt:UIPromptTypes
item:Item

<<signal>>

SpokenCommand
Command:UICommandTypes
item:Item

<<signal>>

TextCommand
Command:UICommandTypes
item:Item

<<enumeration>>

UICommandTypes
Search
Suchen

<<enumeration>>

UIPromptTypes
AvailableNow
AvailableLater
JetztVerfügbar
SpäterVerfügbar

Fig. 9.2. Example of User Inferface Classes for the Library model
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LibraryTestContext <<TestContext>>class 
Library

UserInterfaceTestContext

{1/1}

<<SUT>>

home:Library

<<TestComponent>>

UIContext : UIContext

Speech

Logical

Text

<<TestComponent>>

TBorrower : TBorrower

Fig. 9.3. Example of User Inferface Test configuration

become more resilient to changes in UI localization and physical UI options
for the SUT. We use different ports to represent the two UI modalities, that is,
text and speech, where all spoken prompts and commands are communicated
via the speech port and all text prompts and commands are communicated
via the text port.

In Figure 9.4, we decompose the UITestContext into different parts rep-
resenting the separate concerns of localization and physical aspects identified
for the Library UI. In the following sections, we explain how these parts are
defined to handle these concerns.

Localization Aspects Part

This part defines how UI localization options are abstracted away from the test
case behavior, by mapping different language options to and from “English”
for logical test cases. In our example, we only consider “English” and “German”
languages, which are presented to the user either as text prompts or as spoken
prompts. The behavior of the LocalisationAspects component is defined as a
state machine that takes either.
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UIContextStructure active <<TestComponent>>class {1/2}

Text

Logical

Speech

LocalisationAspects : 
LocalisationAspectsResponses

Inputs

PhysicalAspects : 
PhysicalAspects

TextSignals

SpeechSignals

Prompts

Commands

Fig. 9.4. Decomposition of the User Inferface Test Component

1. language-related stimuli from the abstract test case behavior and trans-
lates it into the language chosen for the particular test instantiation or

2. language-related observations received from the Library UI and translates
them into English.

Physical Aspects Test Component

This part defines how physical aspects of the UI are abstracted away from the
test case behavior. In our example, we only consider the different “physical
concerns.” The first aspect is concerned with text-based interaction, where
inputs are typed into the Library web interface and outputs are displayed in a
web-based textual form. The second is through the use of spoken commands
and prompts. In this case, the behavior of the part is defined as a state machine
that takes either:

1. stimuli from the abstract test case behavior and routes it to the appropri-
ate port, either text or speech, which then encodes the test output or

2. spoken or text-based observations received from the Library UI and trans-
lates them into an abstract form. It also validates that the inputs were
received in the correct form.
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9.3.2 Using Interaction Diagrams

By defining a UI context that abstracts away from possible variability in
the specification of a user interface, we can reuse test cases. For example,
in Figure 9.5, we illustrate how the TestBorrowLocallyAvailable test case can
be reused from system/acceptance testing—see Section 6. In this case, the
only modification to the original is the lifeline representing the SUT, where
we replace the SUT with an instance of the UIContext. By doing this, we
hide the variability in UI Specification of the SUT and consequently avoids
modifications to the test specification as this variability happens.

Sequence diagram1interaction TestBorrowLocallyAvailable {1/1}sd

: UIContext
<<TestComponent>>

: TBorrower
<<TestComponent>>

T1()

T1()

search(Item)

availableNow(Item)

Fig. 9.5. Example of the BorrowLocallyAvailable Test Case for user interface testing

9.4 Usability Testing

So far we have illustrated how UTP can be used to increase the resilience of
test cases to variability in UIS. In addition to this, there are other fundamen-
tal considerations that should be considered during interface testing, such as
usability.

Usability testing can be defined as the process of evaluating the users per-
ception of using a device [21]. In doing so, it may cover a number of concerns:

• Performance. This aspect would cover many various types of users’ con-
cerns relating to the systems time to perform functions or ability to pro-
cess user requests. For example, how long does it take to power up a
system, how long does the user have to wait for the system to perform
some function.
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• Simplicity. This aspect is concerned with evaluating how simple the sys-
tem is to use. For example, how many inputs does a user have to execute
to perform a function on a website, how different buttons does a user have
to press in order to execute a particular function.

• Presentation. This aspect would cover concerns relating to the users’
perception of the system look and feel. Hence, it can cover many aspects,
such as colors, design attributes, and rendering.

• Perceived quality. This aspect is related to the user perception of the
system robustness and output quality. For example, how good is the system
at informing the user when it is unable to perform a function, what is the
quality of outputs, such as video and audio, from the system.

In general, understanding what is important for usability relies upon con-
ducting user studies with a sample set of users to understand what key usabil-
ity attributes are most important from a user’s perspective. Once the usability
attributes are understood tests can be defined to assess and benchmark them
for each system under test. For example, in some cases, standards already
exist for assessing the usability of systems, such as SUMI and WAMMI for
web-based systems [6, 13]. However, because of the variability in UIs, as dis-
cussed in Section 9.1, much usability testing is done manually. Therefore, by
abstracting away from these concerns, it will tend towards more effective and
increased usability test automation.

9.5 Chapter Summary

As the flexibility and variability of UI increase, it introduces difficult chal-
lenges for testing and test automation. Hence, it is important to understand
how UI and usability tests can be abstracted away from specific concerns of
variability to ensure resilience and cost-effective test automation.

Using UML and UTP, we can define test configurations that provide sys-
tematic and logical abstractions that clearly provide a separation of user in-
terface concerns leading to increased reuse of tests. Using the library example,
we showed how use test components, composite structures, and state machines
can be used to provide abstract UI test configurations.



10

Testing Service-Oriented
Architecture Applications

10.1 Service-Oriented Architecture Overview

Service-oriented architectures (SOAs) bring with them the promise of rapid
and flexible integration both within and across enterprise boundaries. The
ability to compose applications in an ad hoc manner is a step forward for
development, but a challenge for testers. This chapter introduces the basic
concepts of SOA and discusses the testing concerns associated with SOA. We
then introduce a general approach for testing SOA applications and demon-
strate it by extending the library example to include services. Finally, we
conclude with a review of SOA testing issues and principles.

10.1.1 Service Orientation: Basic Concepts

Service orientation is an approach to providing business processes as a col-
lection of independent services, each of which performs a specific business
task within the overall process. SOA is an IT paradigm that supports ser-
vice orientation. Perhaps the best known implementation for service orien-
tation is web services. Web services and SOA are frequently equated with
one another, but this is a misuse of terminology. We consider web ser-
vices as one approach for supporting service orientation. The remainder of
this chapter explores SOA testing using web services as a basis, but the
reader should keep in mind that SOA can be supported using other tech-
nical foundations. Furthermore, a thorough introduction to the issues as-
sociated with testing SOAs is an extensive undertaking and is beyond the
scope of this book. We will provide a brief introduction to the area and
to two of the important issues in testing web service-based systems: deter-
mining service fitness for use and testing applications composed from web
services.

There are many modular standards supporting the full definition of web
services. Three of the most frequently used standards are
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• WSDL (Web Services Definition Language)—an XML-based interface def-
inition language for web services

• SOAP (Simple Object Access Protocol)—an XML-based message format
that can bind to a variety of underlying transport mechanisms

• BPEL4WS (Business Process Execution Language for Web Services)—
a workflow orchestration language for defining flow between services to
realize a business process

We focus on the use of WSDL and BPEL4WS in this chapter.

A Brief Tour of WSDL

WSDL is an XML-based language for describing web services and how they
may be accessed. There are four primary building blocks in a WSDL defi-
nition: portTypes, messages, types, and bindings. Ports are defined by the
portType element, which describe the operations that a web service offers.
Messages describe the various types of messages that can be sent to and re-
turned from the web service. Types describe the data types used by the web
service, and bindings describe the communication protocols used by the web
service. Suppose that in our example, the library made the main capabilities
(such as searching for, borrowing, and reserving a book) available via a web
service. The WSDL for this capability would look something like this.

<?xml version="1.0"?>
<definitions name="LibraryServices"

targetNamespace="http://utp.org/libraryservices.wsdl"
xmlns:tns="http://utp.org/libraryservices.wsdl"
xmlns:xsd1="http://utp.org/library.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.org/2000/10/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://utp.org/library.xsd"

xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://www.w3.org/2000/10/XMLSchema">

<simpleType name="ItemTypes">
<restriction base="string">

<enumeration value="Book" />
<enumeration value="DVD" />
<enumeration value="CDROM" />
<enumeration value="Video" />

</restriction>
</simpleType>

<complexType name="StringArray">
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<complexContent>
<restriction base="enc:Array">
<attribute ref="enc:arrayType"
wsdl:arrayType="string[]" />

</restriction>
</complexContent>

</complexType>

<complexType name="Item">
<element name="Type" type="tns:ItemType">
<element name="Authors" type="tns:StringArray">
<element name="Title" type="string">
<element name="ISBN" type="string">
<element name="PublishedDate" type="string">

</complexType>

<complexType name="searchResult">
<element name="item" type="tns:Item">

</complexType>

<complexType name="availableNow">
<complexContent>
<extension base="tns:SearchResult">

</complexContent>
</complexType>

<complexType name="availableLater">
<complexContent>
<extension base="tns:SearchResult">

</complexContent>
</complexType>

<complexType name="notLocallyAvailable">
<complexContent>
<extension base="tns:SearchResult">

</complexContent>
</complexType>

<complexType name="reserveAck">
<element name="item" type="tns:Item">

</complexType>
</schema>

</types>

<message name="itemRequest">
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<part name="item" type="tns:Item"/>
</message>

<message name="searchResponse">
<part name="result" type="tns:SearchResult"/>

</message>

<message name="reserveResponse">
<part name="ack" type="tns:ReserveAck"/>

</message>

<message name="fetchResponse">
<part name="item" type="tns:Item"/>

</message>

<portType name="LibraryService">
<operation name="search">

<input message="itemRequest"/>
<output message="searchResponse"/>

</operation>

<operation name="reserve">
<input message="itemRequest"/>
<output message="reserveResponse"/>

</operation>

<operation name="fetch">
<input message="itemRequest"/>
<output message="fetchResponse"/>

</operation>
</portType>

</definitions>

A brief explanation is helpful to understand this example. The WSDL
begins with the definitions tag, which indicates that definitions of service(s)
follow. The attributes in this tag define both the target namespace for this
definition, and a set of namespaces used by the definition. Next is the types sec-
tion, which is where types used in the WSDL are defined. The types show defi-
nitions for items, as well as some of the complex content for messages between
the service provider and the requester. Next, four messages are defined. The
first one defines an item request, which can be used in all three service opera-
tions. The next three are responses for searching, reserving, and borrowing an



10.1 Service-Oriented Architecture Overview 129

item, respectively. Finally, the service is defined and shown supporting three
operations: searching for an item, reserving an item, and borrowing an item.
More information on WSDL can be found at http://www.w3.org/TR/wsdl.

Orchestration with BPEL4WS

Given a set of web services, the key to making them useful is the ability to
combine them to achieve some goal. This is often referred to as orchestration,
and is the primary concern of BPEL4WS (Business Process Execution Lan-
guage for Web Services). We use BPEL as shorthand for BPEL4WS. BPEL
relies on services being well defined in WSDL and uses the concepts from
WSDL as a basis for defining a business process.

The basic concepts involved in a BPEL definition are processes, partners,
variables, and activities. There are many other concepts in the BPEL defini-
tion that are beyond the scope of this discussion. The process element is the
top level element in a BPEL definition and defines the namespaces that the
process definition uses in specifying the process. Partners are elements that
describe the various parties involved in the process. Each partner is char-
acterized by a given service link type, which is also an element in WSDL
definition for a service, and indirectly associates a partner with a given port-
Type. The partners communicate with the process via the WSDL operations
defined for each partner. Variables are elements in which the contents of a
message can be stored. They are used for moving information between service
definitions in a process. Finally, activities are the elements of action within a
process. They come in many types, with the most frequently used types be-
ing receiving a message from a partner (receive activity), invoking a message
on a partner (invoke activity), and returning a result to a partner (return
activity).

Below, we present an example of a BPEL definition that illustrates the
process of a customer interacting with his/her local library to search for and
borrow a book. If the book is not locally available, the local library searches
at a remote library, and if the book is found, borrows it on behalf of the
customer. The basis for this BPEL is the WSDL presented earlier for the
LibraryServices. Because a full view of BPEL4WS is beyond the scope of this
book, the example is partial but sufficient to illustrate our testing concerns.

<process name="BorrowBookProcess"
targetNamespace="http://utp.org/bookborrowing"
xmlns="http://schemas.xmlsoap.org/ws/

2002/07/business-process/"
xmlns:lns="http://utp.org/libraryservices.wsdl">

<partners>
<partner name="customer"
serviceLinkType="lns:borrowItemLinkType"
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myRole="lender"/>
<partner name="library"
serviceLinkType="lns:borrowItemLinkType"
partnerRole="lender"/>

</partners>

<variables>
<variable name="itemRequestHolder"
messageType="lns:itemRequest"/>

<variable name="searchResponseHolder"
messageType="lns:searchResponse"/>

<variable name="reserveResponseHolder"
messageType="lns:reserveResponse"/>

<variable name="fetchResponseHolder"
messageType="lns:fetchResponse"/>

</variables>

<sequence>
<receive name="searchAndBorrow" partner="customer"
portType="lns:LibraryService"
operation="search" variable="itemRequestHolder"
createInstance="yes">

</receive>

<invoke name="invokeSearch" partner="library"
portType="lns:LibraryService"
operation="search"
inputVariable="itemRequestHolder"
outputVariable="searchResponseHolder">

</invoke>

<switch name="check-available">
<case condition="getVariableData(‘searchResponseHolder’,
‘result’) = availableNow">
<sequence>

<invoke name="checkOut"
partner="library"
portType="lns:LibraryService"
operation="fetch"
inputVariable="itemRequestHolder"
outputVariable="fetchResponseHolder">

</invoke>
<reply name="borrowReply" partner="customer"

portType="lns:LibraryService"
operation="search" variable="fetchResponseHolder">
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</reply>
</sequence>

</case>
<otherwise>
...

</otherwise>
</switch>

</sequence>
</process>

This examples starts with the top-level process element, which also defines
the various namespaces to be used in realizing the process. Next, it defines
two partners that participate in the process: the customer and the library. The
example then defines four variables for holding the four message types defined
in the earlier WSDL. Finally, the process specifies the sequence of activities
that are involved in searching for and checking out a book. First, the activity
searchAndBorrow specifies that the customer initiates a search by sending a
message to the search operation in the LibraryService port. Next, the search is
invoked. The third step checks to see if the item is available. If so, the process
invokes the borrowItem operation on the LibraryService port and then replies
to the customer. The remaining portion of the process is straightforward, but
is not shown here.

Mapping UML to Web Service Elements

There have been several proposed mappings of UML elements to both WSDL
and BPEL. We use a composite of two easy-to-understand mappings in the
following example. This is based on a WSDL mapping found in [43] and a
BPEL mapping found in [4]. Other more comprehensive mappings and profiles
for SOA area are available [32], but they are more complex and are beyond
the scope of this book.

In our mapping to WSDL example, a WSDL port type is defined as a
stereotyped UML class, with the operations on the class defining the opera-
tions available in the portType. The operation on the UML class also defines
the messages. Each operation corresponds to a request message. If the op-
eration has a return parameter, a response message is also created. Types
are expressed as stereotyped UML classes. The UML for the WSDL example
given above is shown in Figure 10.1.

In our example for mapping UML to BPEL, a process is represented as
a stereotyped class, with the attributes defining the variables in the BPEL.
An activity diagram is associated with the class to describe the process. For
standard elements, the mapping is straightforward, but both UML activity
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WSDL Example package 'Profile Examples' {1/2}

<<ServiceSpecification>>

LibraryService

search(item : Item) : searchResult

fetch(item : Item) : Item
reserve(item: Item): reserveAck

<<complexType>>

searchResult
item : Item

<<complexType>>

availableNow
<<complexType>>

availableLater
<<complexType>>

notLocallyAvailable

<<complexType>>

Item
Type : ItemTypes
Authors : String[1 .. *]
Title : String
ISBN : String[10]
PublishedDate : String

<<enumeration>>

ItemTypes
Book
DVD
CDROM
Video

<<complexType>>

reserveAck
item : Item

Fig. 10.1. UML model for WSDL example

diagrams and BPEL are complex industrial standards, and the mapping be-
comes more nuanced as detail is added to either representation. Figure 10.2
shows a UML model illustrating the activity diagram for the BPEL example
above.

10.1.2 Testing Concerns for SOA

When building web services-based application, there are many issues asso-
ciated with testing that need to be considered. The flexible and dynamic
character of web services makes the task to testing them well more difficult.
Consider the following examples. An application is composed of services pro-
vided by several parties, including several third-party vendors. In order to
ensure the application will work as expected, each candidate service being
considered for use in the application will need to be tested in isolation. Fur-
thermore, the services those vendors provide will each have their own lifecycle
for being changed and maintained. Thus, the notion of a fixed release no
longer applies, the “owner” of the application needs to be ready to validate
that it still works correctly every time a service in the application changes.
This points to two major testing areas that we discuss in the remainder of
this chapter.

1. Validating that a service is a good candidate for inclusion into a services-
based application.

2. Validating the application, including how to test the application "on de-
mand" due to service changes.
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BorrowBook activity 'Borrow Book Process' {1/1}

LibraryCustomer

searchAndBorrow
<<receive>>

Entry/search(itemRequestHolder)

invokeSearch
<<invoke>>

Entry/ searchResponseHolder := 
search(itemRequestHolder)

checkOut
<<invoke>>

Entry/fetchResponseHolder :=
borrowItem(itemRequestHolder)

[searchResponseHolder/result =availableNow]

borrowReply
<<reply>>

entry/search() :=
fetchResponseHolder

[searchResponseHolder/result != availableNow]

searchReply
<<reply>>

entry/search() :=
searchResponseHolder

Fig. 10.2. UML model for BPEL example

Individual Service Testing

When considering whether an individual service is suitable for inclusion in a
web service-based application, we need to test the service in isolation. This is
equivalent to unit testing the service. When performing this test, we need to
ensure that we test thoroughly across multiple dimensions.

�Tip 12 Testing WSDL dimensions

1. Test all of the portTypes provided in the service.
2. Test all of the operations available on each port type.
3. Identifying and test the equivalence classes on all of the data elements

provided to each operation.
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Business Process Level Testing

Once we have identified and tested a set of services and determined that they
are suitable for use in our composed application, we then create the application
via process modeling and test it. At this level, our primary testing concern is
to thoroughly cover the process. This requires that we address the following
concerns.

�Tip 13 Testing business processes

1. Determine the paths through the process that we need to test.
2. Determine the data variations that need to be tested along each path. These

are based on both possible inputs to the activities in the path and ensuring
we cover the complex conditions in branches properly.

3. Develop a mapping from the test cases to the elements in the process,
including the involved services and specific operations. This will be useful
for determining which test cases to re-run when a given service is changed.

We now illustrate these testing approaches by applying them to a services-
based version of the library example.

10.2 UTP Test Specification for SOA Applications

In this section, we demonstrate the testing concerns discussed above using
the library example. We start by demonstrating how to manage the test-
ing of individual services using the LibraryServices portType as a basis for
the demonstration. In this example, we develop a test suite to thoroughly
test each operation on the port as well as make use of Data Pools to ensure
we cover important combinations of elements in the types provided to the
operations.

Next, we consider a high-level services view of the completed library ap-
plication composed of five major library capabilities. We demonstrate how to
test this at the business process level. This includes covering all paths and
data variations, as well as providing an example method for tracking depen-
dencies between services and test cases to allow for impact-of-change analysis
and rapid retesting when a service is modified.

10.2.1 Testing Individual Web Services

The general approach we have for comprehensive web services testing (as
outlined in Book Tip 12) is to create a suite of test cases, one for each
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variation on a given operation within a port. To do this, we make use of
the Data Pool concept available in the utp. We illustrate these basic ideas in
an example below. For a more comprehensive discussion on data pools, see
Chapter 7.

In our example, there is only one portType defined, the LibraryService
port. It provides three operations: search, reserve, and fetch. We know that
after a search, we can fetch a book if it is available now, and we can reserve
it if it is available later. However, there is a third option to consider, which is
that the book is not available at the library (for simplification purposes, we
do not consider remote libraries in this example). Thus, to thoroughly test
this service, we need to consider these three cases: the book is available now,
it is available later, and it is not available. To support this testing, we need
to use a data pool, which is shown in Figure 10.3.

Now that we have a data pool setup for use in testing, we can create a
high-level test driver that will check all three of the cases we determined are
important for thoroughly testing the LibraryService portType. This high-level
test driver is shown as an interaction overview diagram in Figure 10.4.

Data Pool package LibrarySOATest {2/2}

<<DataPool>>

ItemPool

<<DataPartition>>

ItemParition
item:Item[*]

selectItem():Item

<<DataPartition>>

BookParition

<<DataPartition>>

CDROMPartition

<<DataPartition>>

VideoPartition

availableNow

1

availableLater

1 notAvailable1 <<DataPartition>>

DVDPartition

Fig. 10.3. Data Pool for LibraryService Testing
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Test Service activity 'Test Service' {1/1}

ref
testLibraryService(dp.availableNow.selectItem(),"availableNow")

ref
testLibraryService(dp.availableLater.selectItem(),"availableLater")

ref
testLibraryService(dp.notAvailable.selectItem(),"notAvailable")

Fig. 10.4. Driver for testing the LibraryService

This driver refers to a test case defined for testing the LibraryService
portType. This test case and its subsidiary diagrams are shown in Figures 10.5,
10.6, and 10.7.

10.2.2 Testing Business Processes

When testing a business process, it is the process itself that is under test. Thus,
we assume that the services used in the process have been validated in accord
with the above requirements. Thus, the service itself is the SUT. Furthermore,
any partner to the service which contains receive activities should be treated
as a Test Component in order to ensure the necessary controllability of the
system.
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Test Library Serviceinteraction testLibraryService {1/1}sd

Library : Library
<<S UT >>

Customer : Customer
<<T estC omponent>>

alt

alt [param2 == "availableNow"]

return pass

return fail

search(param1)

[param2 == "availableLater"]

[param2 == "notAvailable"]

ref
FetchItem(param1)

ref
ReserveItem(param1)

notAvailable(param1)

*

Fig. 10.5. testLibraryService Test Case

In our example, the testing of the process is simple, because there are only
two paths through the process, and they rely on a simple condition (whether or
not the searched for item is available). Once can imagine much more complex
processes and conditions, and the testing required to covers these becomes
more complex. We show the two test cases required to thoroughly test our
business process in Figures 10.8 and 10.9.
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Fetch Iteminteraction FetchItem {1/1}sd

Library : Library
<<S UT >>

Customer : Customer
<<T estC omponent>>

alt

return pass

return fail

availableNow(param1)

fetch(param1)

item(param1)

*

Fig. 10.6. FetchItem diagram

Reserve Iteminteraction ReserveItem {1/1}sd

Library : Library
<<S UT >>

Customer : Customer
<<T estC omponent>>

alt

return pass

return fail

reserve(param1)

reserveAck(param1)

*

Fig. 10.7. ReserveItem Diagram
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Test Availableinteraction testAvailable {1/1}sd

Customer : Customer
<<T estC omponent>>

BorrowBook : BorrowBook
<<S UT >>

alt

search(itemRequestHolder)

search(-):fetchResponseHolder

*

return pass

return fail

Fig. 10.8. Testing the Business Process - Item Available

Test Unavailableinteraction testUnavailable {1/1}sd

BorrowBook : BorrowBook
<<S UT >>

Customer : Customer
<<T estC omponent>>

alt

search(itemRequestHolder)

search(-):searchResponseHolder

*

return pass

return fail

Fig. 10.9. Testing the Business Process - Item Unavailable
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10.3 Conclusion

SOAs provide an important new approach to composing applications from
independent services. They are rapidly being adopted to support agile com-
position of applications, enterprise application integration, and the develop-
ment of applications composed of services that cross enterprise boundaries.
They are powerful and flexible, but this power and flexibility brings with it
testing challenges. We reviewed a few of these challenges in this chapter and
illustrated how UTP could be used to specify test cases that addressed some
basic SOA testing concerns. While a complete treatment of SOA is beyond
the scope of this chapter, we have illustrated how the testing profile is useful
for specifying test cases for SOA-based systems.
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Tool Frameworks and Examples

The UML Testing Profile (UTP) is only as good as the tools that support it.
Hence, this chapter introduces the different types of tools and the different
ways UTP is likely to be supported. We then discuss two pertinent aspects
with respect to the tool support for UTP. The first relates to the interchange
of tests in a standard format, by means of meta-modeling, thereby enabling
tool interoperability. The second relates to the direct execution of the UTP
and the third to the transformation of UTP into another form (e.g., TTCN-3
or JUnit) for test execution.

11.1 Kinds of UTP Tools

Testing tools can improve the efficiency of testing activities by automating
repetitive tasks. Testing tools can also improve the reliability of testing, for
example, automating large numbers of test case executions, repetitive tests, or
distributed tests. There are a number of tools that support different aspects
of UTP-based testing. We classify the tools according to the testing activities
that they support.

UTP tools support typically the activities described below. Some tools
clearly support one activity; others may support more than one.

• Test design. According to [23], along the test design the test conditions
(in terms of coverage items/criteria) for a test item, the detailed test ap-
proach, and the associated high-level test cases are being identified. Test
design techniques are used to derive and/or select test cases as outlined in
Part II for the design of functional tests and in Part III for advanced tests.
The result is a test design document which outlines beyond other things
the test suite structure (e.g., by using UTP test contexts and test case
hierarchies) and the relation to the SUT (e.g., by use of test objectives)
Figure 11.1.
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Fig. 11.1. Overview on UTP tools

• Test specification. The test specification adds to the test design concrete
data for the test cases (e.g., by use of UTP data pools) and test procedure
specifications (e.g., by use of behavioral diagrams for test cases). This
details the test conditions in the test design specification and how to run
each test by including, for example, setup and tear-down procedures and
the test steps that need to be followed.

• Test validation. Test validation is an activity to check the correctness
of the tests. This includes checks for the internal correctness as well as
for the correctness with respect to the system specification and/or system
model. The internal correctness is determined, for example, by the fact
that all test cases are defined as well as the needed test data, that the test
procedures do not deadlock, or that syntax and semantics of the specified
tests are correct with respect to the rules of UTP.

• Test execution. Test execution encompasses all steps needed to per-
form the tests manually or in an automated manner. A manual test ex-
ecution can be supported by tool guidance through the test procedures;
an automated test execution requires the generation of test scripts (e.g.,
along the mappings onto test infrastructures defined by UTP) together
with test drivers to the SUT. In addition, a test platform is used to run
the tests and log the traces automatically. Manual or automated traces
are analyzed subsequently. Certain test environments support a test result
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analysis during test execution; we however separate this activity to highlight
its importance.

• Test result analysis. This activity encompasses the comparison of ex-
pected versus received responses from the SUT along the tests. The re-
sponses include outputs to screens, changes to data and internal states,
produced reports, and communication to its environment. Typically the
comparison is done by a test oracle, which is defined in UTP by the arbiter
and the validation actions. The outcome of this analysis is the collection of
test verdicts per executed tests, that is, the UTP pass, fail, or inconclusive.

• Test generation. Test generation encompasses all activities where parts
of or the whole test specification is generated from a system model along
the test strategies determined in the test design activity. Test generation
will produce UTP artifacts such as test contexts, test configurations.

• System model validation. Finally, tests can be used to validate not
only the running SUT but also the system model itself. That requires a
test model execution against a system model execution. It is a good means
to detect inconsistencies between test and system model in early stages of
development and to correct inconsistencies on either side.

There are also tools beyond the pure UTP-based testing activities sur-
rounding the overall test process such as the following:

• Test management tools. Test management tools support the overall
management of tests and the testing activities carried out. They typically
provide interfaces to test specification tools, test execution tools, defect
tracking tools as well as to requirement management tools and configura-
tion management tools. Often, they provide quantitative measures related
to the tests process (e.g., tests run and tests passed) and the system un-
der test (e.g., incidents raised) in order to control and improve the test
process.

• Monitoring tools. Monitoring tools support runtime checks during sys-
tem operation used for, for example, checks if system delivers the required
functionality and performance and if it obeys security rules. Monitoring
tools run permanently in the background and give out warnings when sys-
tem constraints or invariants are violated, for example, if a system feature
is not available.

• Defect tracking tools. Defect tracking tools (also known as bug track-
ing tools, incident management tools and alike) support workflow-oriented
facilities to track and control the allocation, correction, and retesting of
defects. Defects may be identified not only by tests but also by developer
or customer bug reports. Some tools offer traceability features that link
between system requirements, SUT (model) parts, test results, and bug
reports to enable a better chasing of the defect correction process.

• Static analysis tools. Static analysis tools such as compilers and rule
checkers analyze the SUT without executing it but by analyzing its arti-
facts statically. They can detect possible faults such as unreachable code,
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undeclared variables, parameter type mismatches, uncalled functions and
procedures, and possible array boundary violations. Static analysis tools
can be used for all SUT artifacts, most often they are however used for
system code, system documentation, and system models.

• Metrics tools. Metrics tools enable the quantified analysis of the testing
process in terms of numbers of executed tests, detected errors, severity
of errors, and so forth—as well as the evolution of these numbers over
time. They also provide means to quantify the coverage and other quality
measures of the tests.

11.2 Tool Interoperability

Within a single organization, it is not uncommon to find different tools em-
ployed to cover the different activities during testing—see Section 11.1. For
example, a test management tool is often used together with test specification
tools, test execution tools, and logging tools. Where test management tool is
concerned with configuration management and scheduling of tests, editing and
analysis tools enable the development and verification of tests, test execution,
and logging tools allow the capture and analysis of behaviors recorded during
testing.

This situation by itself is not problematic. However, generally different
tools exist to support these different activities. That means that tools must
interoperate with other tools through the exchange of information. This leads
to interoperability problems between different tools whether they perform
similar or different testing activities. To address this concern, architectural
control points are needed, which allow the separation of concerns, yet provide a
means for the seamless interchange of tools without the need for modification.
These architectural control points are usually defined in terms of interfaces.
Interfaces are generally defined in terms of the information that is exchanged
over them. We define this information using meta modeling. An example of
a key architectural control point could be the exchange of test cases between
a test management tool and a test execution tool. In this case, we want to
abstract away from any concrete implementation language used for test case,
for example, C, Java, TTCN-3. Instead, we desire to have a single generalized
form (i.e. an abstract type or model) for a test case that can be subsequently
realized in a more concrete language if needed.

�Tip 14 Use of standards
Use of standards, open source meta models, or APIs are often an effective
means for defining architectural control points.

Meta modeling is concerned with the abstract representation of the infor-
mation. In this particular case, we are concerned with the abstract
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Fig. 11.2. High-level overview of how model interchange works

representation of test cases using UTP as a means for information exchange
between different tools. UTP has two defined meta models [26]:

1. one is defined as a UML 2 profile
2. one using the Meta Object Facility (MOF).

The reason for the two representations of the UTP model relates to the
different tools that exist for serializing these meta models using XML schemas.
For example, a UML 2 profile is encoded as an XML (XML Model Interchange)
schema [27]. XMI is the standard encoding for UML models as such any valid
UML profile is also encoded in the same manner. Figure 11.2 illustrates an
example of the process by which test case information is exchanged between
a test management and test execution tool using the XMI serialization of the
UTP meta model.

Note that key open source environments, such as the Eclipse Integrated
Development Environment [9], use an MOF-based form of meta modeling
called the Eclipse Modelling Framework (EMF) [5]. In doing so, the UTP
MOF-based meta model is used as the basis for some information exchange
between tools within the Eclipse Test and Performance Test Platform Project.

11.3 Executable UTP

In order to make UML 2 models “executable,” the models need to be trans-
lated into executable code, such as Java or C++. This process is called code
generation. Code generation from UML 2 models must be supported by tools
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mapping model concepts to target language constructs. UTP as a domain-
specific extension of UML 2 provides valuable means for functional and real-
time test modeling. However, in order to make test models executable, they
must be mapped to executable test languages as well.

Driven by the idea to make UTP models executable, existing test languages
and tools are examined by the UTP consortium. However, UTP has its roots
in different test languages, among those are JUnit for unit testing and TTCN-
3 for integration and system testing. For those languages, sophisticated tools
already exist.

Figure 11.3 illustrates the application areas of the mentioned languages:
While UTP can be utilized for test requirement, test design and test specifi-
cations, JUnit and TTCN-3 are mainly used to specify, implement, execute,
and evaluate tests during the test development process. However, TTCN-3
can also be used for test design. Thus, Figure 11.3 shows overlapping areas
between TTCN-3 and UTP for test design and test specification phases. The
application areas between JUnit and UTP overlap in the test specification
phase [7].
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Fig. 11.3. Application areas of the languages

Indeed, mapping UTP models to the mentioned test languages enables the
reuse of existing test infrastructures. As a result, a recommendation to map
UTP concepts to JUnit and TTCN-3 language constructs is supplied in the
UTP standard [26].1

1 The standards only give a recommendation since mapping between two languages
can be manifold.
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Test Execution with JUnit

Agile practices have led to a new appreciation of the importance of unit
testing. “Test first” and iterative coding/testing approaches have become quite
popular because of their ability to help keep code running and of providing a
benchmark on how close to working a unit of implementation is. JUnit [16] is a
popular, easy to use, and powerful framework for developing unit test cases for
Java programs. JUnit played a major role in making agile techniques popular,
primarily due to two reasons. First, it made unit testing into a program de-
velopment task, which is something that programmers naturally understand.
Second, it made it easy to create, maintain, execute, and understand unit
tests and their results. Unit level tests that can be easily and automatically
executed can give quick feedback on the code a developer has written and any
modifications to it. This rapid feedback is invaluable for modern development
processes. The execution framework for JUnit is Java and the implementations
are included in many IDEs, such as Eclipse [9] or JBuilder [15].

This chapter begins by providing an overview of version 4.0 of the JUnit
testing framework. This includes a description of how test cases and test suites
are defined, how test case setup and tear-down are facilitated, and how to
check verdicts. We also discuss new facilities for dealing with exceptions and
managing tests with timing constraints. When the UTP was developed, the
most recent version of JUnit was 3.8.x. Many of the facilities that are discussed
in the UTP standard have changed, and some capabilities have been added
that map well to the UTP. Thus, this chapter presents a more recent view of
how JUnit and UTP align than the standard does.

After giving the JUnit overview, we provide a mapping between JUnit
4.0 and UTP and discuss nuances in using the mapping. Finally, based on
certain profile elements that are missing from JUnit, we suggest some basic
enhancements that could make JUnit even more powerful.
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12.1 JUnit 4.0 Fundamentals

JUnit 4.0 is an updated version of the popular JUnit framework. The new
release is a significant departure from earlier versions, which relied on naming
conventions, subclassing, reflection, and similar Java constructs to enable the
recognition and execution of test cases. JUnit 4.0 takes advantage of key Java
5 features (particularly annotation) to identify test cases and their related
constructs. Understanding and using the concepts require an understanding
of the annotation capabilities available in Java 5.0 (JUnit 4.0 requires a Java
5.0 JDK to run). Java 5.0 has a general purpose annotation facility that allows
programmers to define annotation types, use annotations in declarations. It
also provides APIs for reading annotations, a class-based representation for
annotations, and an annotation processing facility. For further information on
annotations, please see [14].

In order to understand JUnit 4.0, we need to understand a set of basic
concepts. These include test methods, setup and tear-down methods, assertion
methods for checking results, techniques for handling expected exceptions, and
techniques for timing a test. We now give a brief overview of the differences
between earlier versions of JUnit and JUnit 4.0, followed by details on the key
constructs in JUnit 4.0.

12.1.1 Annotations: A New Foundation for JUnit

As mentioned above, older versions of JUnit relied on the use of syntactic
conventions and subclassing to identify test-related elements and treat them
properly. For example, test methods existed in test case classes. To be recog-
nizable to the JUnit framework, classes had to inherit from TestCase, which
was an abstract class in the JUnit framework. The test methods had to start
with the string “test,” which identified those methods as performing a test.
To prepare for the execution of tests, the older versions of the JUnit frame-
work called a method called “setUp” which had to exist in the test case class.
Similarly, cleanup was done by the framework calling a method “tearDown”
which also needed to exist in the class.

JUnit 4.0 avoids the use of these syntactic and subclassing techniques
through the use of annotations. Classes containing test methods no longer need
to subclass TestCase, and annotations are used rather than specific naming
techniques for identifying test methods, setup and tear-down methods, and
other testing constructs. We now describe each of these annotations in more
detail.

12.1.2 Test Methods

Test methods are identified by @Test. For example, if we had a test method
in a class developed to test the borrowing capabilities of the library, we would
annotate it as follows:



12.1 JUnit 4.0 Fundamentals 151

@Test public void checkBorrowingAbility () {
...

}

The @Test annotation is all that is required to mark a method as a test
method.

12.1.3 Set up and Tear down

There are also annotations for marking methods that should be run before
and after each test case. These are denoted using @Before and @After. So,
you could imagine using the following code to set up before the test cases and
tear down afterward.

@Before setupForTesting() {
theLibrary = new Library();

}

@After cleanupFromTesting() {
theLibrary = null;

}

There can be as many methods as you like with @Before and @After
annotations. However, the order in which they will be run is not specified,
so any order specific instructions should be done within a single method to
ensure they execute in the proper order.

JUnit 4.0 also offers new constructs to perform one-time setup and tear-
down. These are indicated via the annotation @BeforeClass and @AfterClass.
The @BeforeClass annotation is run once before all of the test methods, and
the @AfterClass method is run once after all of the test methods. Only one
method per class may have one of the one-time annotations.

12.1.4 Assertions

Assertions are used to test conditions that determine whether a test method
passes or fails. These are accessed through the static class Assert that is part
of the JUnit framework. There are many different assertion methods available
on this class, and describing these in detail is beyond the scope of this book. A
full description of the assertion methods can be found in the JUnit javadoc, in
[17]. Below is a code fragment illustrating how assertions can be used. First,
the Assert class is imported for use in the class where the test methods are
located. The code fragment illustrates an assertion stating we expect to find
a book on a library search.

import static org.junit.Assert.*;
...
@Test public void checkBorrowingAbility() {
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...
available = theLibrary.search(item);
assertTrue(available):
...

}

12.1.5 Test Method Annotations

JUnit 4.0 provides two new capabilities that are accessed using parameters
to the @Test annotation. They are exception checking and timing a test case.
The exception checking facility is very useful for testing whether expected ex-
ceptions are thrown when exceptional conditions are being tested. The syntax
for exception checking is @Test (expected=exceptionName.class), where
exceptionName is the name of the expected exception. When the method an-
notated with this information is executed, if any exception other than the
expected exception (or no exception) is thrown, the test will fail.

There is also a new parameterized way to time a test. Again, the parameter
is declared in the @Test annotation. The syntax is @Test (timeout=value),
where value is the number of milliseconds within which the test method must
complete. If the execution time of the method exceeds the timeout value, the
test fails.

12.2 UTP to JUnit Mapping

JUnit served as one basis for the development of UTP. Table 12.1 provides
the mapping rules from UTP to JUnit. A lot of the UTP concepts can be
mapped to JUnit concepts. But since JUnit is a framework only for unit tests,
there are several of concepts in UTP which are not defined in JUnit. Some of
these would be useful for unit testing and could be valuable additions to the
JUnit framework in future releases.

Table 12.1. UTP to JUnit mapping

UTP JUnit

System Under
Test(SUT)

Not explicitly identified in JUnit. Any class in
the classpath can be considered as part of the
SUT.

Test context The test context is implicit in JUnit. The con-
text is defined by any class containing a test
method (marked with @Test tag). Note that be-
cause scheduling and arbitration are built into
the JUnit framework, the requirement that the
context contain properties realizing the Arbiter
and Scheduler interfaces is not met.
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Test control JUnit provides a default test control with its
Runner class. This can be extended to provide
custom test control capabilities.

Scheduler Scheduling is performed by default using the
JUnit Runner class. This can be extended to
provide custom Scheduling capabilities.

Test component Not explicitly identified in JUnit, but classes
containing test methods can use other classes
as necessary. They may participate in (but not
return) a verdict.

Test
configuration

Test configuration is implicit in JUnit. It con-
sists of the classes associated with a context
(specific class containing test methods) used in
testing.

Test objective Not an explicit part of JUnit, but may be real-
ized as comments on test methods.

Test case A test case is a method marked with a @Test
tag.

Test invocation A test invocation is a call to a method marked
with a @Test tag.

Arbiter JUnit provides a default Arbiter in its RunLis-
tener and Result classes. The default versions
provide methods other than setVerdict() and
getVerdict() for manaing results. Custom arbi-
tration is possible by extending these classes.

Verdict Predefined verdicts are pass, fail, and error. JU-
nit has no inconclusive verdict.

Defaults JUnit has no explicit default mechanism. A
hierarchy of Java exceptions can be used to sup-
port the UTP default hierachy.

Validation action Validation actions can be mapped to calls to
various assertion methods in the JUnit frame
work.

Stimulus and
observation

These are not explicitly represented in JUnit,
which relies on method calls and return values.

Logging concepts:
test log and log
action

JUnit does not have explicit logging support.
However, Java provides logging facilities that
can be used within JUnit. More information
is available at http://java.sun.com/j2se/1.5.0/
docs/api/java/util/logging/package-summary.
html

(continued)
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Table 12.1. continued

UTP JUnit
Data concepts: data
pools, data partitions,
and data selectors

There are no special JUnit constructs for these
concepts. They can all be supported as regular
Java classes.

Data concepts: wild-
cards and coding rules

JUnit does not support wildcards or coding
rules.

Timer Managed using timeout parameters on @Test
tags. JUnit timing capabilities only have one
level of granularity (the method) and cannot
be used for more or less granular purposes.

Timezone JUnit does not support timezone.
Deployment concepts
(test node and test
artifact)

Deployment is outside of the scope of JUnit.

12.3 UTP to JUnit Example

We now present an example of the derivation of a JUnit test from a UTP
specification. Figure 12.1 shows an overview of the classes for the library
system. These are the same classes as presented in the introduction to the
library example, but they have been modified to replace signals for the various
library capabilities with operations rather than signals. This is because Java
and JUnit are method (operation) based, rather than signal based.

Following the library description is a unit test specification for checking
whether an item known to be held in the library can be borrowed or reserved.
This is represented as an interaction diagram that describes the interaction
between a library testing context (LibraryUnitTest) and a class under test
(Library) Figure 12.2.

We now show the corresponding JUnit code. The correspondence between
the specified UTP testcase and the JUnit code is straightforward.

package utp.junitExample;

import org.junit.Test;
import static org.junit.Assert.*;
import junit.framework.JUnit4TestAdapter;

public class LibraryUnitTest {

public enum Result { AVAILABLE, BORROWED, RESERVED, UNAVAILABLE }

@Test public void itemForLoan() {
String itemName = "An item held by the library";
Library theLibrary = new Library();
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Result result = theLibrary.search(itemName);
if (result == AVAILABLE) {

Boolean theItem = theLibrary.fetch(itemName);
assertTrue("Item should be borrowed",theItem);

else if (result == BORROWED) {
result = theLibrary.reserve(itemName);
assertEquals("Item should be reserved",
(new Float(result)).doubleValue(),
(new Float(RESERVED)).doubleValue());

}
else fail("Item should have been held in the library!");

}
//support running JUnit 4 tests with older runners.
public static junit.framework.Test suite() {

return new JUnit4TestAdapter(LibraryUnitTestContext.class);
}

}

LibraryClasses package LibrarySystem {1/1}

Borrower

Library
Name : String
Location : String

search ( title : String) : Result
fetch ( title : String) : Item
reserve ( title : String) : Result <<enumeration>>

ItemTypes
Book
DVD
CDROM
Video

LibraryCard
valid: Boolean

name # card
1 0 .. 1

LibraryContext

b
Librarian

checkLibraryCard ( libcard : LibraryCard)

l

<<enumeration>>

Result
AVAILABLE
BORROWED
RESERVED
UNAVAILABLE

Item
Type : ItemTypes
Authors : String[1 .. *]
Title : String
ISBN : String[10]
PublishedDate : String
- available : Boolean
- returnDate : Integer
+ belongs : Library[1]

+ belongs keeps

1 0..*

Fig. 12.1. Library system description



156 12 Test Execution with JUnit

LoanTestcaseinteraction itemForLoan {1/1}sd

Assert : AssertLibrary : Library
<<S UT >>

: LibraryUnitTest
<<T estC ontext>>

alt

alt

Library()

search(title) : BORROWED

fetch(title): theItem 

assertTrue("Item should be borrowed",theItem)

search(title) : AVAILABLE

reserve(title) : result 

assertEquals("Item should be reserved",result,RESERVED)

fail("Item should have been held in the library")

Fig. 12.2. Test case—interaction diagram

12.4 Conclusion

In this chapter, we have provided a brief introduction to the JUnit 4.0 frame-
work and demonstrated how UTP specifications can be mapped into JUnit.
To date, no automated tools exist for generating JUnit test cases from UTP
specifications, but such a tool could be a powerful asset, as it could unify
model-driven development and test first design methodologies.
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Test Execution with TTCN-3

The Testing and Test Control Notation (TTCN-3, [11]) is a widely estab-
lished standardized test technology for testing communication-based systems.
It provides concepts suitable for various kinds of testing of distributed and
non-distributed systems. The mapping from UTP to TTCN-3 is used to en-
able the execution of UTP tests on TTCN-3 test infrastructures. Furthermore,
not only can the test execution be automated, but also a precise TTCN-3 se-
mantics is given to UTP test specifications.

Although TTCN-3 was one basis for the development of UTP, they still
differ in several respects. The Testing Profile is targeted at UML providing
selected extensions to the features of TTCN-3 as well as restricting/omitting
other TTCN-3 features. Still, a mapping from the Testing Profile to TTCN-
3-and the other way around is possible with certain restrictions.

This chapter discusses the relation between UTP and TTCN-3 and outlines
an approach how to make use of TTCN-3-based test environments for the
automated execution of UTP tests.

13.1 Fundamentals of TTCN-3

Like UTP, TTCN-3 enables the specification of tests at an abstract level by
focusing on the definition of the test cases rather than on the test system adap-
tation and execution. TTCN-3 enables a systematic and specification-based
test development for various kinds of tests, including the functional, scala-
bility, load, interoperability, robustness, regression, system, and integration
testing [8]. TTCN-3 was developed from 1998 to 2001 by a team of Euro-
pean Telecommunications Standards Institute (ETSI) experts as a successor
language to Tree and Tabular Combined Notation (TTCN-2). It has been
continuously maintained since then.

An overview on TTCN-3 can be found in Figure 13.1: Despite the textual
TTCN-3 Core Language, Textual Presentation Format of TTCN-3 (CL), pre-
sentation formats can also be taken as front ends of the language. The tabular
and graphical formats called Tabular Presentation Format of TTCN-3 (TFT)
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Fig. 13.1. Overview on TTCN-3

and Graphical Presentation Format of TTCN-3 (GFT) are standardized for-
mats of TTCN-3. Other presentation formats can be added according to the
needs of the users. Furthermore,the core language of TTCN-3 provides in-
terfaces to referenced data which are defined in other description languages.
For that, types and values such as defined in the Abstract Syntax Notation
One (ASN.1) or Interface Definition Language (IDL) can be imported to
TTCN-3.

The ETSI standard for TTCN-3 currently comprises eight parts:

1. The Core Language, Textual Presentation Format of TTCN-3 (CL) in-
troduces the test-specific constructs of TTCN-3 and defines the textual
syntax of TTCN-3 [11, 12].

2. Tabular Presentation Format of TTCN-3 (TFT) defines a presentation
format based on a collection of tables and resembles the appearance of
earlier TTCN versions [10].

3. Graphical Presentation Format of TTCN-3 (GFT) defines a graphical
format visualizing the test behavior by means of sequence diagrams. It is
based on MSC [44] and was a central source for the UTP development.

4. The Operational Semantics of TTCN-3 (OS) defines the semantics of
TTCN-3 constructs and provides a state-oriented view for the execution
of TTCN-3 tests.

5. The TTCN-3 Runtime Interface (TRI) is one of the set of TTCN-3 exe-
cution interfaces and provides a platform-specific adaptation layer to in-
teract with the system to be tested. It handles communication and timing
aspects of the test execution.

6. The TTCN-3 Control Interface (TCI) is the other set of TTCN-3 execu-
tion interfaces and provides a platform-specific adaptation layer to interact
with the test platform itself. It handles test management, test component
handling, and encoding/decoding aspects of the test execution.
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7. The ASN.1 to TTCN-3 mapping defines rules on how to derive test struc-
tures from ASN.1 definitions and how to use ASN.1 specifications seam-
lessly within TTCN-3 tests.

8. The IDL to TTCN-3 mapping defines rules on how to derive test struc-
tures from IDL definitions and how to use IDL specifications seamlessly
within TTCN-3 tests.

Further standard parts are currently under development such as an Exten-
sible Markup Language (XML) schema to TTCN-3 mapping, a C to TTCN-3
mapping, a documentation mechanism that supports working with tags within
TTCN-3 specifications for the generation of test documentation.

13.1.1 Modules and Test Cases

The top-level unit of TTCN 3 test specification is a module. A module can
import definitions from other modules, but cannot be structured into sub-
modules. Modules can have module parameters to allow test suite parameter-
ization.

A module consists of a definitions part and a control part. The definitions
part of a module defines test components and communication ports, data
types and test data templates, functions, and test cases.

The control part of a module invokes the test cases and controls their
execution. Control statements such as if-then-else or do-while can be used to
specify the selection and execution order of test cases.

13.1.2 Types and Values

TTCN-3 supports a number of predefined basic types. These basic types in-
clude those normally associated with a programming language, such as inte-
ger, Boolean and string types, as well as some TTCN-3 specific ones such as
verdicttype.

Structured types such as record types, set types, and enumerated types
can be constructed from these basic types. The special data type anytype is
defined as the union of all known data types and the address type within a
module.

Special types associated with test configurations such as address, port, and
component may be used to define the architecture of the test system. The
special type default may be used for the default handling in test behaviors.

A special kind of data structure called a template provides parameteriza-
tion and matching mechanisms for specifying test data to be sent or received
over test ports. Test data may be defined both for asynchronous message-based
or for synchronous procedure-based communication.
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13.1.3 Test Components and Test Behavior

TTCN-3 allows the (dynamic) specification of concurrent test configurations.
A configuration consists of a set of interconnected test components with well-
defined communication ports and an explicit test system interface (TSI) which
defines the borders of the test system.

Dynamic test behavior is expressed as test cases. Within every configura-
tion there is one (and only one) Main Test Component (MTC). The behavior
defined in the body of a test case is executed on this component. Additional
parallel test components may be created and execute test behavior in parallel.

TTCN-3 control statements include powerful behavior description mech-
anisms such as alternative reception of communication and timer events, in-
terleaving, and default behavior. Test verdict assignment and logging mecha-
nisms are also supported.

13.1.4 UTP and TTCN-3 Relationship

When comparing TTCN-3 with UTP, the commonalities and differences can
be summarized as follows:

• both are test specification languages, but UTP inherits from UML the
strong support for system and test system specification. This is an area
where UTP is richer than TTCN-3. On the contrary, TTCN-3 has a well-
defined approach toward test execution where UML and UTP are lacking
a well-defined mechanism for execution.

• both are graphical test specification languages, but TTCN-3 has also other
presentation formats and in particular a textual one, which is typically
more efficient whenever it comes to technically detailed test specifications.

• both are test modeling languages, but the UTP semantics are flexible and
adaptable for different application domains (such as the UML semantics).
The TTCN-3 semantics is precisely defined.

We can combine the two languages via a bidirectional mapping that
supports

• translating UTP to TTCN-3 enables the reuse of TTCN-3 infrastructures
for UTP test execution by providing a precise semantics to UTP, and

• translating TTCN-3 to UTP enables to leverage development of TTCN-3
tests on a higher level of abstraction for test design.

Both are explained below.

13.2 UTP to TTCN-3 Mapping

As the design principles of UTP encompass UML integration, reuse, and min-
imality, the basic mapping from UTP to TTCN-3 involves both
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1. the mapping of those UML concepts that are being used in UTP specifi-
cations and

2. the mapping of UTP concepts to TTCN-3.

Most of the mapping rules are quite straightforward. Concepts such as
SUT, test components, test cases, defaults, test control, verdicts, wildcards,
test log, timer, and timezone are provided in both languages. Thus, they can
be mapped almost directly. Nevertheless, TTCN-3 and UTP differ in some
syntactic as well as semantic aspects. While UTP is based on object-oriented
paradigm of UML where behavior is bound to objects, TTCN-3 is based on
the concept of functions and the binding of functions to test components [30].
There are other subtle differences such as the handling of interface queues:
while TTCN-3 uses a First In, First Out (FIFO) queue per test component
port, UML (and hence UTP) defines a semantic variation point for queue
handling. A UTP test component can have one or more queues, each of which
can follow FIFO or other scheduling approaches. Therefore, care has to be
taken when defining any mapping from UTP to TTCN-3.

Whenever a UML concept is mapped to TTCN-3, one has to differentiate
whether that concept is part of the SUT or the test system. While the test sys-
tem requires access to all definitions, the SUT needs only access via interfaces
or publically available features. For example, UML classes being classifiers
that can be directly instantiated are used to specify the system structure.
Features of a class are defined by its attributes and operations, which can be
private, protected, or public. If that class defines parts of the SUT, access to
the publically available features is only required. If the class is however used
for a test component, the full TTCN-3 representation is needed.

Another central element in the mapping is the mapping of namespaces.
A UML namespace such as a package, an interface, or a class has a quali-
fied name that reflects the hierarchical scope. This hierarchy has no one-to-
one correspondence in the structure of TTCN-3 modules. Therefore, a com-
posed module name is built for each namespace. For example, the test con-
text LibraryUnitTestContext (see Figure 4.2) in package LibraryUnitTest and in
package UTPExampleTotal is converted to a module named UTPExampleTo-
tal_LibraryUnitTest_LibraryUnitTestContext. The hierarchical scope name can
be omitted, if not needed.

Please note that while the principal mapping is provided in Table 13.1,
there are further nuances that are beyond the scope of this book. These include
items such as the visibility of elements, read/write access, inheritance, and
parameterization.

13.3 UTP to TTCN-3 Example

As example, we use the unit level tests for ItemForLoan defined in Section 4.1.
ItemForLoan belonging to the system under test in Figure. 13.2 translates

into the record type ItemForLoanClass. As in the class definition, this record
contains condition and itm of the appropriate types.
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Table 13.1. UTP to TTCN-3 mapping

UTP TTCN-3
SUT The test system accesses the SUT via the ab-

stract TSI. The SUT interfaces result in port
types used by TSI.

Test context A TTCN-3 module covering all test cases and
related definitions of the test context, having
a specific TSI component type (to access the
SUT) and a specific behavioral function to set
up the initial test configuration for this test
context. Note that although scheduling and ar-
bitration are built into the TTCN-3 execution
semantics, user-defined arbiter and scheduler
can be defined explicitly.

Test control The control part of the TTCN-3 module.
Scheduler Scheduling is performed by default in TTCN-

3. Whenever user-defined scheduling is needed,
it has to be modeled explicitly, for example, as
part of the MTC.

Test component A TTCN-3 component type definition per UTP
test component.

Test
configuration

The test configuration is established by use of
runs on clauses or create statements together
with connect and map statements which link
test component ports with TSI ports or with
other test component ports.

Test objective Not an explicit part of TTCN-3, but may be
realized as comments or user-defined attributes
of test cases, modules, functions and alike.

Test case There is one TTCN-3 test case per UTP test
case. The behavior of the test case is defined by
functions representing the behavior of a given
test case. The MTC is used like a “controller”
that creates test components and starts its be-
havior. If needed, the MTC may control/serve
also an user-defined arbiter and scheduler.

Test invocation The execution of a TTCN-3 test case with the
execute statement.

Arbiter The UTP default arbiter is a TTCN-3 built-in.
User-defined arbiters can be realized by a sep-
arate component or by the MTC itself.
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Verdict TTCN-3 offers the same predefined verdicts
as UTP.

Defaults Defaults translate into altsteps, which are
activated and deactivated along the UTP de-
fault hierarchy.

Validation action Validation actions can be mapped to invoca-
tions of internal or external (data) functions
returning verdicts.

Stimulus and ob-
servation

These map to send and receive statements
for asynchronous communication and to call,
getreply and catch statements and to getcall,
reply and raise statements for synchronous
communication.

Logging concepts:
test log and log
action

TTCN-3 has an explicit log statement that
corresponds to the log action. Test logs are
automatically generated by the TCI log-
ging Interface. An explicit link between test
specification and test log is however not
supported, but may be mimiced with a user-
defined attribute for a test case or a whole
module.

Data concepts:
data pools, data
partitions, and
data selectors

There are no special TTCN-3 constructs for
these concepts. However, the set of tem-
plates of a given type can be considered
as a data pool. Template returning func-
tions can represent data selectors. Data par-
titions can be represented by attributes for
the templates and other means, for exam-
ple, functions. Furthermore, these concepts
can be represented externally to a TTCN-
3 module—where external functions provide
access to them.

Data concepts:
wildcards

TTCN-3 provides the UTP wildcards as
builtin matching mechanism (and more).

Data concepts:
coding rules

TTCN-3 allows to reference coding rules by
the encode and encode variant attributes.

Timer UTP timer map to TTCN-3 timers, which
have seconds as time granularity (and have
to be scaled if needed) and which can be
started and stopped dynamically.

Timezone TTCN-3 does not support timezone.
continued
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Table 13.1. Continued

UTP TTCN-3

Deployment concepts
(test node and test
artifact

Deployment is outside of the scope of
TTCN-3.

The SUT items for loan are reached via the address type which points to
ItemForLoanClass.

Listing 13.1. TTCN-3 Representation of a UML class

1type record ItemForLoanClass {
ItemCondition condition ,
ItemClass itm

}

6type enumerated ItemCondition {ok,broken}

type record ItemClass {
ItemTypes Type ,
...

11}

type ItemForLoanClass address ;

Every public feature can be read with a get operation such as conditionGet.
Those that can be changed from outside have also a set operation such as
conditionSet. Features however that are read-only (such as for itm) will have
a get operation only. Private features such as the timer LoanPeriod are not
translated as they are not reachable from outside.

Last but not the least, all signals being sent to items for loan or are being
generated (as defined by the state machine given in Figure 4.4) are repre-
sented by messages SearchSignal which are defined by user-defined types—in
our case record types with a field item as defined in the LibrarySystem (see also
Section 3).

<<enumeration>>

ItemCondition
ok
broken

ItemForLoan
+condition : ItemCondition
+itm: Item

ItemForLoan ()
timer LoanPeriod()

Fig. 13.2. Example of SUT Class
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Listing 13.2. TTCN-3 communication to Items for loan

signature conditionGet(ItemForLoanClass itm)
2return ItemCondition;

signature conditionSet
(ItemForLoanClass itm , ItemCondition cond);

signature itmSet(ItemForLoanClass itm) return Item;

7type record itemSignal { ItemClass item }
type record searchSignal { ItemClass item }
...
type record locallyUnavailableSignal { ItemClass item }
type record remotelyUnavailableSignal { ItemClass item }

�Tip 15 Mapping of UML classes of the system under test
Every UML class of the system under test is represented by a TTCN-3 record.
The class features become record fields. For every attribute, there are GET and
SET signatures for the read and write access to the attributes. The signals
sent to and received from such a system object are represented by messages
and their user-defined messages types. The address type is linked to the record
type. The classifier behavior will typically not be made accessible by a TTCN-3
operation.

UML classes used for the test system are test components constituted by
the test context or by parts of the test context. Their mapping requires the
representation of all class features. As the unit level test context (see also
Figure 4.2) has no additional test components, just a main test component
is needed. This is represented by the type LibraryUnitTestContextComp—see
Listing 13.3. This type contains book, which is the link to the system under
test and which is created prior to the test. In fact, the test case will run on
LibraryUnitTestContextComp, which in turn will create an instance of that type
as the MTC, which then invokes the external function createItemForLoan to
create the SUT. In addition, port ifla gives access to the SUT as defined in
Listing 13.4.

Listing 13.3. TTCN-3 representation of a test context

type component LibraryUnitTestContextComp {
var address book:= createItemForLoan(Book ,ok);
port ItemForLoanAccess ifla;

4}
external function createItemForLoan

(ItemTypes t, ItemCondition c)
return address;

The port type ItemForLoanAccess is a mixed port meaning that ports of that
type can transfer both asynchronous messages like SearchSignal or synchronous
operation invocations like conditionGet (see also Listing 13.2). The direction
of the communication is defined with the in and out keywords—for example,
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the fetchSignal is in out direction as it is sent by the test system, while the
availableLaterSignal is in the in direction being sent by the item for loan.

Listing 13.4. The interface to the SUT

type port ItemForLoanAccess mixed {
out itemSignal , searchSignal , reserveSignal ,

3fetchSignal , tryRemoteSignal ,
returningSignal , repairedSignal;

out conditionGet , conditionSet , itmGet;
in availableNowSignal, availableLaterSignal,

locallyUnavailableSignal, remotelyUnavailableSignal,
8buyNewSignal

}

Finally, the test case behavior is translated into a TTCN-3 test case
UnitTest_ItemForLoan_Interaction given in Listing 13.5. As said already,
the test case runs on LibraryUnitTestContextComp. Initially, the item should
be ok which is checked with the first call and getreply statements. Then,
the item is fetched (withsend(fetchSignal...)) and indicated as broken (with
call(conditionSet...)). After return (with send(returningSignal...)) and repair
(with send(repairedSignal...)), the item is still broken. Hence, the item should
respond with an order note. This is checked with receive(buyNewSignal...) and
completes the test.

Listing 13.5. The test behavior

1testcase UnitTest_ItemForLoan_Interaction()
runs on LibraryUnitTestContextComp {

// itm should be ok
ifla.call(conditionGet:{book}) {

[] ifla.getreply (conditionGet:{book} value ok) {}
6}

ifla.send(fetchSignal:{book.itm});
// itm should be broken
ifla.call(conditionSet:{book ,broken }){

[] ifla.getreply (conditionSet:{book ,broken }){}
11}

ifla.send(returningSignal:{book.itm});
ifla.send(repairedSignal:{book.itm});
// itm is still broken
ifla.receive (buyNewSignal:{book.itm});

16}

A more robust way of defining this test would be to activate initially
a default in order to handle all unexpected and missing responses from
the SUT as shown in Listing 13.6. The activated (Default) takes care of
any incoming message (with receive), reply (with getreply), call (with get-
call), and exception (with catch) that is not handled previously in the re-
ceiving statements of the test case. In such cases, a fail verdict is assigned
and the test stops. A more robust behavior would be to safeguard the test
with timers; however we leave it to the reader to extend the test case
properly.
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Listing 13.6. Robust test behavior

altstep Default () runs on LibraryUnitTestContextComp {
[] ifla.receive { setverdict(fail);stop }
[] ifla.getreply { setverdict(fail);stop }

4[] ifla.getcall { setverdict(fail);stop }
[] ifla.catch { setverdict(fail);stop }

}

testcase UnitTest_ItemForLoan_Interaction()
9runs on LibraryUnitTestContextComp {

activate (Default ());
// itm should be ok
ifla.call (conditionGet: {book}) {
...

14}

13.4 Executing UTP Specifications
via TTCN-3 Test Platforms

TTCN-3 allows users to specify tests independent of the technology that the
target system is realized in. In order to run the tests, executable tests are being
generated from the TTCN-3 test specifications. These executable tests follow
the principles of the TTCN-3 system architecture which has been outlined
and refined in Parts 5 and 6 of [11].

Part 5 of [11] defines the TRI. TRI provides interfaces to adapt a TTCN-3
test system to the SUT. It offers functionality to adapt the communication
with the SUT (i.e., how to interact with the SUT, how to invoke its interface,
etc.), the timing, and the inclusion of external functions.

Part 6 of [11] adds to this the TCI, which offer functionality for test man-
agement, component handling (both on local and remote nodes) as well as
the type and value handling (i.e., how to encode and decode data exchanged
between SUT and test system).

TRI and TCI adapters provide the glue between test system and SUT. Of-
ten, TTCN-3 environments offer a number of ready-to-use adapters or means
to generate them efficiently. At the end, such adapters are developed once—
possibly for a whole family of systems such as for CORBA or Web Service-
based systems—and can be reused for different tests. These adaptors complete
the path from UTP via their TTCN-3 representation to a TTCN-3-based test
execution.

13.5 Representing TTCN-3 Test Suites by UTP

Another interesting relation between TTCN-3 and UTP is if and how UTP
could be used as a graphical presentation for TTCN-3 textual specifications.
Although TTCN-3 has an own graphical format GFT ([11], Part 3), this is
limited to the single behavior of test components only. UTP however allows not
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only to visualize the interaction of test components with the system under test
but allows also to represent test behaviors with activities and state machines,
which is beyond the current capabilities of GFT.

While this representation is theoretically possible, as any correct TTCN-
3 test suite is executable by itself and therefore representable in UML (and
UTP), there are subtle (but tractable) differences between the TTCN-3 and
the UTP semantics. We believe that it is only a question of time until tools
provide the mapping from TTCN-3 to UTP. This would be a powerful en-
hancement, as it would enable iterative test processes with test designs in
UTP and technical tests on TTCN-3 level.

13.6 Conclusion

UTP and TTCN-3 are both test specification techniques that are useful in var-
ious domains, support a variety of development and test processes, and offer
support for different kinds of testing on different test levels. While TTCN-3
is already widely supported by tools, UTP is emerging technology. A ma-
jor difference between the two is the strong support for test design by UTP
as compared to a strong support for automated test execution by TTCN-3.
Because of these differences, TTCN-3 is the choice for technical testing and
automated execution, while UTP is the choice for high-level test design and
modeling. Fundamentally, both UTP and TTCN-3 provide a basis for sys-
tematic testing and they can be integrated and used together, particularly in
UML-based development environments.
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UTP Reference Guide

Table A.1. UTP Reference Guide

UTP Representation Definition Example Reference
System
Under
Test
(SUT)

Element with
stereotype
<<SUT>>

The SUT is the
system which is to
be tested

See Figure 4.5 on
Page 58,
Figure 5.3 on Page 68,
Figure 5.2 on Page 67,
Figure 6.3 on Page 76

Test
Compo-
nent

Element
with stereo-
type <<Test
Component>>

A test component
is a class of a test
system. It has a
set of interfaces via
which it may com-
municate via con-
nections with other
test components or
with the SUT

See Figure 5.3 on
Page 68, Figure 5.2 on
Page 67, Figure 6.3 on
Page 76

Test
Objec-
tive

Element with
stereotype
<<Test
Objective>>

A test objective de-
scribes the purpose
of the test in an
informal way

Test
Objec-
tive

Element with
stereotype
<<Test
Objective>>

A test objective de-
scribes the purpose
of the test in an
informal way

(Continued)
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Table A.1. (Continued)

UTP Representation Definition Example Reference
Test
Context

Element with
stereotype
<<Test
Context>>

The test context is
a stereotyped class
that contains the
test cases as oper-
ations and whose
composite struc-
ture defines the
test configuration

See Figure 4.2 on Page 53,
Figure 5.2 on Page 67,
Figure 4.5 on Page 58,
Figure 6.3 on Page 76

Test
Config-
uration

No special rep-
resent.

A test configura-
tion is the collec-
tion of test com-
ponent objects and
of connections be-
tween the test com-
ponent objects and
the SUT.

See Figure 6.3 on Page 76,
Figure 5.2 on Page 67

Test
Case

Element
with stereo-
type <<Test
Case>>

UTP test case con-
cretizes a test ob-
jective. A test case
always returns a
test verdict

See Figure 4.5 on Page 58,
Figure 4.6 on Page 60,
Figure 5.3 on Page 68

Test
Verdict

No special rep-
resent.

Each test case re-
turns a verdict.
Predefined verdicts
are pass, fail, in-
conclusive, and er-
ror

Figure 5.3 on Page 68

Default Comment sym-
bol with key-
word default

Default provides
a mechanism for
specifying how to
respond to the re-
ceipt of messages
that are not explic-
itly modeled in the
specification. They
are typically used
for exception han-
dling

Figure 6.5 on Page 78,
Figure 6.7 on Page 80
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Arbiter No special rep-
resent.

An arbiter evalu-
ates individual test
results from test
components and
assigns the overall
verdict. The indi-
vidual test results
are given to the ar-
biter via validation
actions.

Scheduler No special rep-
resent.

A scheduler is used
to control the ex-
ecution of the dif-
ferent test compo-
nents

Start timer:

Timer Stop timer:

timeout: Timers are mech-
anisms that gener-
ate a timeout event
when a specified
time interval has
expired relative to
a given instance.
Timers belong to
test components

Figure 6.4 on Page 77,
Figure 6.5 on Page 78,
Figure 8.5 on Page 101

Timezone No special rep-
resent.

A timezone is a
grouping mecha-
nism for test com-
ponents. Each test
component belongs
to a given time-
zone. Test compo-
nents in the same
timezone have the
same time

(Continued)
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Table A.1. (Continued)

UTP Representation Definition Example Reference
Data
Pool

Element with
stereotype
<<Data
Pool>>

A data pool con-
tains a set of values
or partitions that
can be associated
with a particular
test context and its
test cases

Figure 7.5 on Page 93,

Data
Partition

Element with
stereotype
<<Data
Partition>>

A data partition
is used to define
equivalence classes
and data sets

Figure 7.5 on Page 93

Data Se-
lector

Element with
stereotype
<<DataSelector
>>

a data selector de-
fines different selec-
tion strategies for
these data sets.

Wildcards “*”: Any or
null;“?”: Any

A wildcard denotes
any value

See Figure 7.3 on Page 91

Coding
Rule

Comment sym-
bol with key-
word coding

Data Partition Figure 6.3 on Page 76



Acronyms

ASN.1 Abstract Syntax Notation One
BVA Boundary Value Analysis
CUT Component Under Test
CL Core Language, Textual Presentation Format of TTCN-3
CTE Classification Tree Method
ETSI European Telecommunications Standards Institute
FIFO First In, First Out
FSM Finite State Machines
FT Foreground Test Component
GFT Graphical Presentation Format of TTCN-3
IDL Interface Definition Language
ITU International Telecommunication Union
MOF Meta-Object Facility
MSC Message Sequence Chart
MTC Main Test Component
OS Operational Semantics of TTCN-3
OMG Object Management Group
SDL Specification and Description Language
SUT System Under Test
TCI TTCN-3 Control Interface
TFT Tabular Presentation Format of TTCN-3
TRI TTCN-3 Runtime Interface
TTCN-2 Tree and Tabular Combined Notation
TTCN-3 Testing and Test Control Notation
UML 2 Unified Modeling Language, version 2
UML Unified Modeling Language
UI User Interface
UTP UML Testing Profile
XML Extensible Markup Language
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book, 35
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Business Process Execution Language

for Web Services, see BPEL
business process testing, 136

class diagrams, 72
class models, 15
coding rule, 87
combined fragment, 22
completeness, 71
component and integration level testing,

63
composite structure, 17
composition, 17
consortium, 2
correctness, 71

data
decoding, 87
encoding, 87
parameterization, 87
parameters, 87

data driven testing, 94
data partition, 32, 87, 91, 94

data pool, 32, 87, 91
data selector, 87, 91
data types, 87
decision, 27
defaults, 32, 78

behavior, 78
designer, 1
determAlt, 33
developer, 1
diamond node, 28
duration intervals, 99

emulators, 65
definition of emulators, 66
dummies, 66
generation of emulators, 67
stubs, 66

entry/exit criteria, 91
equivalence partitions, 92
event, 21

final node, 27
final state, 27
finish action, 33
functional testing, see black-box testing

gate, 22
glass-box testing, see white-box testing
guard, 24, 28

initial node, 27
initial pseudo state, 26
instance specification, 88, 89
integration strategies, 64
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ad-hoc integration, 64
big-bang integration, 64
bottom-up integration, 64
top-down integration, 64

interaction, 55
interaction diagrams, 72, 75, 99
interaction overview diagram, 36

JUnit, 2, 149–156
annotations, 150
assertions, 151
checking timing, 152
exception checking, 152
mapping to UTP, 152
set up, 151
tear down, 151
test methods, 150

library, 35
library context, 35
lifelines, 20
load monitor, 109

message, 21
Message Sequence Charts, 2
meta modeling, 143
mock objects, 66
model driven development, 1
model-based testing, 1, 7

model-based test development, 11
modeling, 2
models, 1
multiplicity, 16

navigability, 17
non-functional testing, 117

object diagrams, 72
OMG, 1
Open Management Group, 1

package diagrams, 76
package import, 52
performance, 97, 117
performance testing, 97, 106
profile, 29

real-time constraints, 98
real-time testing, 97
remote library, 39

return message, 21

scheduler, 33, 107
Sequence diagrams, 20
Service Oriented Architecture, see SOA
signal, 24, 26
SOA, 125

testing concerns, 132
specification, 2
Specification and Description Language,

2
standard, 2
state, 26
state machine, 25, 55
state machine diagrams, 72, 99
system architect, 1
system development, 1
system testing, 71

interactions, 75
test structure, 75
use cases, 73

System Under Test, 52
SUT, 52

system under test, 29

test architecture, 29
test behavior, 31
test case, 57
test component, 29, 65
test configuration, 29, 65
test context, 29, 53, 119

control flow, 74
system test, 74

test coverage, 91
test data, 32
test development, 1
test execution, 144
test log, 33
test model, 32, 52
test objective, 31, 56
test specification, 144
test validation, 144
test verdicts, 59
time intervals, 99
time zones, 32
timeout, 77
timer, 32, 77, 101
tool frameworks, 143
tool interoperability, 143, 146
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transition, 26
triggers, 26
TTCN-3, 2, 32

U2TP, 1
UML, 1

mapping SOA elements, 131
UML 2.0, 1
UML 2.0 Testing Profile, 1
unit level test, 51
usability, 97, 117
usability testing, 123
use case diagram, 73
use cases, 18, 72, 73

analysis, 74
exception cases, 73
normal cases, 73

user interface context, 119
user interface testing, 120
user interfaces, 117

abstraction, 117
interactions, 123

localization options, 117, 119
logical aspects, 119
performance, 117
physical aspects, 119
test configuration, 120
test context, 119, 120

V-model, 7
value specification, 87, 88
verdict, 29, 32, 79

fail, 79
inconclusive, 79
pass, 79

W-model, 7
web service testing, 134
web services, 125
Web Services Definition Language, see

WSDL
white-box testing, 12
wildcards, 32, 88, 89
WSDL, 126
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